(1.国网山西省电力公司调控中心; 2.山西大学,电力工程系)
摘要:风剪切、塔影效应和偏航系统会在风电场产生3倍风机转速频率的电压波动,严重时使敏感负荷不能正常工作。针对HHT无法精确检测频率比值小于1.5的两电压波动而造成的检测误差较大这一问题,本文采用等间隔解析模态分解和Hilbert相结合的方法,详细分析了待检信号频率密集度、间隔紧密度和幅值波动率之间的关系及其对检测误差的影响,确定了能够精确检测频率密集度为0.1Hz的电压波动频率和幅值的最佳间隔紧密度,最后用该方法对某风电场实测数据进行检测,证明了该方法的有效性。
关键词:高频率密集度;电压波动;等间隔解析模态分解;波动率
Project Supported by Key Laboratory of Mining Electrical Equipment and Intelligent Control (Taiyuan University of Technology), Shanxi, China(EMI2015-5).
Abstract: wind shears, tower shadow, and yaw error can produce voltage fluctuation whose frequency is three times rotate speed of wind turbine, and the voltage fluctuation can impact on sensitive load and even not work nomally. The paper aims the problem that HHT can’t detect accurately if the frequency radio of two voltage fluctuation is less than 1.5, uses the method combined by equal interval analytical mode decomposition (EIAMD) and Hilbert, analyzes the relationship between frequency intensity, interval compactness, and fluctuation radio, also their influence on detection error, determines the best inter compactness that can precisely check the frequency and amplitude of the voltage fluctuation when frequency intensity is 0.1Hz. The data of actual measurement on wind farm have been checked by EIAMD and Hilbert, and the results prove the effectiveness of the proposed method.
Key words: high frequency intensity; voltage fluctuation; equal interval analytical mode decomposition; fluctuation radio
引言
风电场产生的电压波动严重时会使敏感性负荷无法正常工作,产生原因主要是风能的不确定性导致输出功率波动[1-3]和风剪切、塔影效应和偏航系统所引起的3倍风机转速频率电压波动(简称3p,p为风机转速频率)[4-6]。在一定风速下,风机输出功率为恒定,功率波动为零,但仍会产生3p电压波动。一个风电场内多台风机的风速不尽相同,会围绕中心风速在公共连接点处产生一组高频率密集度的电压波动,其频率范围是1~3Hz,频率密集度最小可达0.1Hz[5,7]。因此,为了提高风电场电能质量,需要精确检测这组高频率密集度电压波动的频率和幅值。
由于HHT (Hilbert Huang Transform)能够有效检测非平稳信号而被用于检测电压波动[8,9],但其缺点是无法检测两频率之比小于1.5的高紧密度电压波动[10,11]。文献[10]采用SAX方法(Symbolic Aggregate Approximation)将信号转换为符号用于确定非平稳信号中的平稳信号边界,文献[12]采用小波变换和HHT相结合的方法对分布式电源并网系统中的谐波进行检测。以上方法都对检测两频率之比小于1.5的高紧密度信号进行了有效尝试,但其研究对象频率范围较宽,且两频率之比也远大于1。由于风电场3p电压波动各频率最小间隔在0.1Hz,两频率之比非常接近1,模态混叠现象将更加严重。
Chen和Wang于2012年提出解析模态分解(Analytical Mode Decomposition, AMD)被应用于检测紧密间隔信号的频率[13],文献[11]用于滚动轴承的故障诊断,文献[14]用于桥梁和高层建筑工作环境振动响应的参数识别。风电场的3P电压波动是被调制于工频电压中,而后者的幅值远大于前者,以上文献研究的各信号幅值相近,并未考虑两者之间的影响。
本文将采用EIAMD和Hilbert变换相结合的方法,针对风电场产生的高频率密度电压波动检测展开研究,以提高对电压波动频率和幅值的检测精度。本文首先介绍了解析模态分解的基本原理,提出了等间隔解析模态分解的算法步骤,从密集度、紧密度和波动率三个方面入手,分析了其对检测误差的影响程度,仿真和算例结果进一步验证了该方法的有效性。
1基于EIAMD的高密度电压波动检测
解析模态分解
设待测电压为 ,由 个电压波动分量 组成
特别地, 。其中 为Hilbert变换, 为截止频率的积分,对于频率不随时间变化的波动,式(3)可以简化为
图1 EIAMD+Hilbert电压波动检测方法流程
Fig.1 Voltage fluctuations detection flow of EIAMD+Hilbert
2.参数影响度分析
2.1频率密集度
3. 仿真验证
3.1 算法有效性检验
根据参数影响度分析可知,此时的频率密集度为0.9Hz,波动率为0.1。仿真结果如图2所示。由图2(a)可知,待测电压经过等间隔解析模态分解后分为13个波动分量。A7和A8分别表示频率在49.5~50Hz和50~50.5Hz区间的波动分量和,可以看出这两个区间的波动分量最强,由于50Hz正处于A7和A8的边界,被两组波动分量平分,因此幅值为0.5V。A6和A9分别对应49~49.5Hz和
(b)边际谱
图2 仿真计算结果
Fig.2 Results of simulation
50.5~51Hz的波动分量和,可以看出虽然波动幅值相比A7和A8小,但比其他的波动分量都大,其余分量波动幅值都接近0V。从图(b)中可以看出,在47~53Hz边际谱共包含3个极大值,精确检出幅值分别为:0.1、0.1和1.0V,频率分别为50.9、49.1和50Hz。由此可以得出,采用等间隔解析模态分解的方法可以精确检出电压波动的频率和幅值。
3.2 参数影响度分析
(b)检测50Hz边际谱幅值等高线
(d)检测出第一组数据边际谱幅值等高线
(e)第二组数据边际谱幅值
图4 考虑间隔基准偏移时 Hz仿真结果
Fig.4 Results of simulation on in consiferation of interval reference offset
图7 某风电场电压波动检测结果
Fig.7 Detection results of voltage fluctuations in wind farm
5. 结论
本文通过分析待测波动频率密集度、间隔紧密度和波动率对检测误差的影响得出:要想实现待测波动的精确检测,必须满足间隔密集度小于等于待测频率密集度的条件。为了进一步提高检测精度,采用间隔基准偏移的方法,并确定间隔紧密度为0.2Hz的等间隔解析模态分解可以有效避免模态混叠,计算误差最小,实现了对风电场高密集度波动的检测,仿真结果证明了该方法的有效性。
参考文献
Ramesh Babu. N and Arulmozhivarman. P. Improving forecast accuracy of wind speed using wavelet transform and neural networks[J]. Journal of Electrical Engineering and Technology, 2013, 8(3): 559-564.
G. Linas, B. Audrius, G. Kelum, et al. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries[J]. Electrical Power and Energy Systems, 2016, 74: 310-321.
X. Ran, S. Miao, Z. jiang, et al. A framewok for uncertainty quantification and economic dispatch model with wind-solar energy[J]. Electrical Power and Energy Systems, 2015, 73: 23-33.
R. Fadaeinedjad, G. Moschopoulos, and M. Moallem. The impact of tower shadow, yaw error, and wind shears on power quality in a wind diesel system[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 102-111.
胡煜,伍青安,袁越等. 风电引起3P闪变的仿真分析[J]. 电力自动化设备, 2013, 33(3): 108-11.
Hu Yu, Wu Qingan, Yuan Yue, et al. Simulative analysis of 3P voltage flicker caused by wind farm integration[J]. Electric Power Automation Equipment, 2013, 33(3): 108-1111(in Chinese).
W. Hu, Y. Zhang, Z. Chen, et al. Flicker mitigation by speed control of permanent magnet synchronous generator variable speed wind turbines[J]. Energies, 2013, 6(8): 3807-3821.
赵海翔, 陈默子, 戴慧珠. 风电并网引起闪变的测试系统仿真[J]. 太阳能学报, 2005, 26(1): 28-33.
Zhao Haixiang, Chen Mozi, and Dai Huizhu. Simulation of the flichermeter suitable for measuring the flicker produced by integrated wind power[J]. ACTA Energiae Solaris Sinica, 2005, 26(1): 28-33(in Chinese).
江辉, 王晓强, 彭建春. 基于希尔伯特-黄变换的电压闪变测量方法[J]. 电网技术, 2012, 36(9): 250-256.
Jiang Hui, Wang Xiaoqiang, and Peng Jianchun. Method to measure voltage flicker based on Hilbert-Huang transform[J]. Power System Technology, 2012, 36(9): 250-256(in Chinese).
贾秀芳, 陈清, 赵成勇等. 电压闪变检测算法的比较[J]. 高电压技术, 2009, 35(9): 2126-2132.
Jia Xiufang, Chen Qing, Zhao Chengyong et al. Comparision of flicker detection methods[J]. High Voltage Engineering, 2009, 35(9): 2126-2132(in Chinese).
M. J. Afroni, D. Sutanto, and D. Stirling. Analysis of nonstationary power quality waveforms using iterative Hilbert Huang Transform and SAX algorithm[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2134-2144.
时培明, 苏翠娇, 韩东颖. 基于AMD-HHT的非平稳信号紧密间隔频率检测[J]. 仪器仪表学报. 2014, 35(12): 2817-2825.
Shi Peiming, Su Cuijiao, and Han Dongying. Closely spaced frequency component detection method of non-stationary signal based on AMD and HHT[J]. Chonses Journal of Scientific Instrument, 2014, 35(12): 2817-2825(in Chinese).
李正明, 徐敏, 潘天红等. 基于小波变换和HHT的分布式并网系统谐波检测方法[J]. 电力系统保护与控制,2014, 42(4): 34-39.
Li Zhengming, Xu Min, Pan Tianhong, et al. A harmonic detection method for distributed connected grid system by using wavelet transform and HHT[J]. Power System Protection and Control, 2014, 42(4): 34-39(in Chinese).
G. Chen and Z.Wang. Asignal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechnical Systems and Signal Processing, 2012, 28: 258-279.
Z. Wang and G. Chen. Analytical mode decomposition with Hilbert transform for modal parameter indentification of buildings under ambient vibration[J]. Engineering Structures, 2014, 59: 173-184.
A. Foroughi, E.mohammadi, and S. Esmaeili. Application of Hilbert-Huang tranform and support vector machine for detection and classification of voltage sag sources[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2014, 22: 1116-1129.
收稿日期:
作者简介:
武晓东(1978),男,博士研究生,讲师,山西大学电力工程系,研究方向为电能质量分析与控制,E-mial:wuxiaodoong9871@163.com;
基金项目:
煤矿电气设备与智能控制山西省重点实验室(太原理工大学)开放基金(EMI2015-5)。
论文作者:朱燕芳,武晓冬,朱子晴,张秀丽,石新聪
论文发表刊物:《电力设备》2016年第15期
论文发表时间:2016/11/3
标签:电压论文; 频率论文; 间隔论文; 密集论文; 分解论文; 模态论文; 方法论文; 《电力设备》2016年第15期论文;