“边缘前沿”问题研究_生产函数论文

“刃锋”问题研究,本文主要内容关键词为:刃锋论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

众所周知,哈罗德—多马经济增长模式是不稳定的,而索洛的新古典经济增长模式是稳定 的,索洛的突破恰恰是改变了哈罗德—多马模式所采用的固定系数生产函数,采用了规模收 益 不变的连续总体生产函数。这使得长期以来,人们一直有一种观点,即哈罗德—多马经济增 长模式的不稳定问题(也叫“刃锋”问题)之所以出现,是因为哈罗德采用的技术有问题,他 没考虑到资本和劳动是可互换使用的,从而导致了他的经济增长模式不能解释经济增长的持 续繁荣不已。本文通过详细的分析,并通过和索洛经济增长模式的比较说明:哈罗德—多马 经济增长模式的不稳定性质是由于哈罗德是一个凯恩斯主义者,强调企业家行为和预期的作 用;同时,哈罗德是充分理解资本和劳动在技术上相互替代的可能性的,只不过他强调,由 于利率不可能平稳下降无法保证资本和劳动是可以替代的罢了。按照凯恩斯经济理论推导的 哈罗德—多马经济增长模式只能是不稳定的。索洛经济增长模式的稳定性质,并不仅仅是因 为索洛理解资本和劳动在技术上是可替代的,从而采用连续总体生产函数,而且是因为:(1 )索洛没有强调预期的作用,总是令事前投资等于事前储蓄,在其模式中不存在一个独立的 投资函数。如果采用一个独立的投资函数,哈罗德的不稳定问题会立即在索洛模式中重现。 (2)索洛模式假定利率可变。

一、哈罗德—多马经济增长模式的“刃锋”问题

哈罗德模型的基本方程为g=s/v。它表明,要实现均衡的经济增长,国民收入增长率就必须 等于社会储蓄倾向与资本—产出比二者之比。如果上述基本方程中的v是资本的实际变化量 与国民收入的实际变化量的比率,那么在一定储蓄比例之下,由此而导出的国民收入增长率 被称为实际增长率,记其为G[,A]。于是基本方程式可写为:

G[,A]=s/v

(1.1)

根据哈罗德的说法,要进行动态理论探讨,重要的是考虑企业家的预期和企业家是否合乎 意愿等心理因素。如果考虑到这些因素,情况就会有所不同。若把资本—产出比v理解为企 业家意愿中所需要有的资本—产出比,用v[,r]表示它,那么基本方程就可以写为:

G[,A]=s/v[,r] (1.2)

这里的收入增长率是与企业家所需要的资本—产出比v[,r]相适应的收入增长率,它是企业家 感到满意的收入增长率,哈罗德把它称为“有保证的增长率”,用G[,W]表示。

根据(1.1)式和(1.2)式,可以得到

G[,AV]=G[,W]v[,r](1.3)

(1.3)式表明,如果现实经济活动出现的实际增长率G[,A]等于企业家感到满意的增长率,即 有保证的增长率G[,W],那么实际资本—产出比v就必然等于企业家所需的(或希望保持的)资本 —产出比率v[,r]。或者说,如果国民收入按照比率G[,W]增长,那么与实际产出或实际收入的增 长相联系的实际资本增量就会等于企业家感到满意的资本增量。由于在资本主义国家中的积 累 或资本增量取决于资本家的意愿,所以只要国民收入按照G[,W]这个增长率增长,就会使企业 家保持“愿意进一步实现类似增长”的心理状态,从而国民收入就会年复一年地按照G[,W]增 长下去。正是为此,哈罗德才把G[,W]称为“有保证的增长率”。这里的“有保证”显然指“ 由于资本家满意而得到保证”而言。

但是,哈罗德模型的以上论点遇到了两个不容易解决的问题。第一个问题是经济沿着均衡 途径增长的可能性是否存在,或者说,就具体的经济活动来说,是否存在一条均衡增长途径 。这个问题又被称为“存在问题”。

由于实际增长率是许多各不相同的决策者的预期、决策和失误等多种因素作用的结果,因 此人们没有理由期望经济活动实际上一定会长期持久地按照“有保证的增长率”增长下去。 同时,还应该考虑就业水平这一因素,说明实际增长率与劳动力增长率二者之间的关系。要 实现劳动力的充分就业,国民收入的增长率必须等于劳动力的增长率。简言之,按照哈罗德 的说法,首先,国民收入要实现均衡增长,实际增长率G[,A]就必须等于G[,W];其次,要实现充 分就业的均衡增长,就必须满足:

G[,A]=G[,W]=s/v=s/v[,r]=n=G[,] (1.4)

这里的n为一国的人口增长率。这一等式表明了实现充分就业均衡增长的必要条件。哈罗德 又把符合上述条件的增长率称为“自然增长率”,用G[,]来表示。显然,G[,]=n。这是社会所 能达到的最大的、“最适宜的”增长率。如果(1.4)式所表明的条件得到满足,那么经济活 动按照s/v=s/v[,r]=n这一比率增长。在现实经济活动中,s/v=s/v[,r]=n这一情况毕竟是有可能 出现的。因此哈罗德认为,在资本主义条件下,实现充分就业均衡增长的可能性是存在的。 但另一方面,由于储蓄倾向s由经济中的厂商和居民户的偏好所决定,劳动力的增长率对于 经济制度而言是外生的——它只是由出生率和死亡率的生物学方面决定,资本—产出比v是 技 术固定性的反应。因此,除非偶然的巧合,这种充分就业的均衡增长是不会出现的。于是, 哈罗马德认为,虽然G[,]=G[,W]=G[,]这种理想的充分就业均衡增长途径是存在的,但是,一般 说来,实现充分就业均衡增长的可能性是极小的。被罗宾逊夫人(John Robinson)称为黄金 时代(golden age)——经济均衡增长的充分就业状态——的现象是不会出现的。(注:Joan Robinson Essay in the theory of economic 1962 London MacMillan p52-59.)

“这样说 明它只代表一种在任何实际经济中都不可能达到的神话般的情况。”(注:Joan Robinson Essay in the theory of economic 1962 London MacMillan

第99-100页。)

第二个问题是,经济活动一旦偏离了均衡增长路径,其本身是否能够自动地回到均衡增长 路径,这个问题又称为“稳定性问题”。现在进一步考察一下(1.3)式,即G[,AV]=G[,W]v[,r]=s, 可见,只有当实际的资本—产出比v等于合意的资本—产量比v[,r]时,实际增长率G[,A]才会等 于 有保证的增长率G[,W]。如果G[,A]大于(或小于)G[,W],那么v就小于(或大于)v[,r]。也就是说,一 旦实际增长率大于(或小于)有保证的增长率,企业的固定资产和存货就会少(或多于)企业家 所 需要的数量。这种情况促使企业家增加(或减少)订货,增加(或减少)投资,从而使实际产出 水平进一步提高(或降低),使实际增长率G[,A]与有保证的增长率G[,W]之间出现更大的缺口。现 有的实际经济增长就会在市场上的企业中产生相应的反应,使得G[,A]进一步大于(或小于)G[,W] 。因此,哈罗德得出结论:实际增长率与有保证的增长率之间一旦发生了偏差,经济活动不 仅不能自我纠正,而且还会产生更大的偏离。这个结论被称为哈罗德的“不稳定原理”。这 意味着,资本主义经济发展很难稳定在一个不变的发展速度上,不是连续上升,便是连续下 降,呈现出剧烈波动的状态。

哈罗德第二问题经常被称为“刃锋”(knifeedge)性质,这种描述从形象上把握了哈罗德— 多马思路所特有的权威性结论和性质:甚至在长期,经济系统充其量也只能是平衡于均衡增 长的刃锋上。(注:Solow,R.H.A Contribution to the theory of economic growth Q.J.E 1956第65页, v o170,转载sen编《Growth Economics》Penguin Harmond-sworth 1970。哈罗德曾反对这种 意见,并在1973年出版的《Economic Dynamics》中修改了以前的说明。他抱怨说“我根本 没有写过(或说过)的话可以证明这种对我观点的描述是正当的(第32页)。哈罗德不喜欢“刃 锋”这种说法,因为“它是完全不现实的,甚至还有一些荒谬”(同上、第33页),他把经济 系统比作“置干草坡上的一个球”来简述其观点。“可能很使劲地踢它一脚才能运动,但 一旦动作之后,它就可能跑得很远,特别是在山坡还很陡峭的情况下,较之平地上用同样的 力量开始踢一脚要跑得更远,它可能跑完全程一直到山脚下。”

二、新古典经济增长模式对“刃锋”问题的解决

索洛(Solow)的突破恰恰是从哈罗德—多马模式的局限性出发的。在仔细研究哈罗德的理论 之 后,索洛在其划时代的贡献中,指出哈罗德模型的问题在于他隐含了资本与劳动不可替代假 定。“有保证率和自然率的基本矛盾归根结底是由于这一决定性的假设,即生产是在固定比 例之下进行的。在生产中劳动和资本根本不能替代。如果这个假定不存在的话,不稳定平衡 的‘刃锋’概念似乎可以迎刃而解了。”(注:Solow,R.M.A contribution to the theory of Economic growth Q.J.E.1956第65页。

)放松这个假定后,索洛创立了新古典经济增长 理论模型。以k代表资本—劳动比率,n代表人口的自然增长率,索洛模型的基本方程式可以 用下式表示:

k=sf(k)-nk

(2.1)

式中f(·)是齐次线性生产函数,f(k)是人均产出。sf(k)是每个工人的储蓄,并且由于在 这个模式中储蓄是自动变成投资的,所以也可以把它解释为每一工人所配的投资流量。nk是 在劳动力按一个不变的比率n增长的给定条件下,为保持资本—劳动比不变所要求的投资量 ——即资本广化。资本—劳动比的变化率k是由每一工人的储蓄(和投资)量与在劳动力增长 时为保持资本—劳动比不变所要求的量的差额量所决定的——即资本深化。如果该社会中每 一工人的储蓄大于这个量,那么很清楚,资本存量将比劳动力增长得更快,而资本—劳动比 就会提高。由于“缺少了一个投资函数并最后不能赋予企业家对将来预期的重要作用”(注:Sen,A.K.(ed.)Growth economics penguin Harmond-sworth 1970.第25页。)

即 “回避”凯恩斯困难的方法是令事前储蓄等于事前投资。而且由于工资率和利润率能平滑地 和即时地调整得适合于改变着的环境,在索洛模型中的要素市场能完全发挥作用,索洛模型 解决了哈罗德—多马模型中的不稳定性问题。

新古典模型中的均衡增长率是不变的和外生的劳动力的增长率。在长期中,该经济收敛于 平衡增长的轨道。因此,新古典经济的长期增长率是n,并且完全独立于收入中用于储蓄的 比例。关于新古典经济增长模式对“刃锋”问题的解决的详细说明限于篇幅,这里从略。

三、分析

虽然索洛的新古典经济增长模式解决了哈罗德—多马经济增长模式的“刃锋”问题,但是 不能由此认为哈罗德—多马模型的“刃锋”性质是因为他们采用的技术有问题。在这里我们 通 过将这两个模型比较,说明本文一开始提出的论点。

(一)哈罗德充分理解资本和劳动是可以替代

哈罗德—多马模式的理论基础是凯恩斯主义理论。它不仅在理论上是投资等于储蓄这一公 式的长期化与动态化,而且在分析中也沿用了凯恩斯主义的抽象心理概念。例如,对经济增 长 具有重要作用的有保证的增长率是资本家感到满意并准备继续维持下去的增长率,这里所强 调的仍然是资本家的心理预期,即凯恩斯所说的资本边际效率,这样就和凯恩斯同样,把资 本家的乐观或悲观的情绪扩大为决定经济增长的因素。

上述“刃锋”问题的出现是因为哈罗德在推导自己的模型时,假定利息率(资本报酬率)是 常数,从而间接地假定了资本和劳动在增长过程中是不会发生替代的。(注:Harrod,R.F.Towards to Dynamics Economics:Some Recent Development of economic theory and their applications to policy MacMillan London 1984.第21-22页,原文 是“在利率不变的假定下,要用什么样的资本行为才能与其他要素增长相一致”。

)根据欧拉定理,如 果生产函数满足规模报酬不变的条件,按各生产要素的边际产量偿付给它们的报酬将会把总 产量刚好耗尽。(注:Allen,R.G.D.Mathematical Analysis for Economists 2nd edn,Macmillan,London,193 8第317-319页。

资本数量×资本的边际产量+劳动数量×劳动的边际产量=总产出量

或以数学的形式写出:

Y

Y

K ──+L──=Y

K

 L

如果边际生产力的分配理论被人接受,则资本的价格,即实际利润率,就等于资本的边际 产量;而劳动的价格,即实际工资率,就等于劳动的边际产量。在没有风险的竞争条件下, 利息率等于利润率,而简单的边际生产力理论说明利润率由于竞争而等于资本的边际生产力 ——即是产出的变化相对于资本增加的变化的比率。即

ΔY

Y

r=──

(严格地讲,──=r)

ΔK

K

这里ΔY和ΔK各自代表产出和资本的增加量。不变的资本—产出比即意味着不变的利率, 反之亦然(我们推出这个结论,应以不存在技术进步为前提)。

哈罗德采用的是固定系数生产函数,

此处min表示最小量。例如,如果L/u是上式中的最小量,那么Y就决定于L/u。而所需资本 则取决于vY。由于式中资本—产出比v不变,所以给定一定数量的K,当K/v<L/U时,有一种 且只有一种Y的流量可以生产出来,不管可用的劳动力多到什么程度。这种技术的间接含义 是资本和劳动力在产品生产中完全不能相互替代。需要指出的是,哈罗德并没有直接假定资 本和劳动是不可替代的,在1960年论文中,他指出了利率和资本—产出比的互逆关系,并说 “应该能够满足那些抱怨我没有考虑和其他要素的替代性问题的反对者了吧”。(注:Harrod,R.F.Second Essay in Dynamics theory E.J,1960,第285页。)

因此,可 以得出结论,如利率固定则资本—产出比v也固定,而资本—产出比的不变性应是来自经济 体制,而不是来自任意做的技术假定。v的变化需要利率的变化,哈罗德特别作出结论说“ 基 本条件可能需要一种稳定下降的利率,我们发现,很难设想资本市场如何能够成功地提供这 样的稳定下降”。(注:Harrod,R.F.Towards a Dynamics Economics:some Recent Development of Economic T heory and their applications to policy Macmillan London,1948,第25页。

)阻止利率下降的任何力量——例如凯恩斯“流动性陷阱”(liquidity t rap)——应该能阻止资本—产出比的自由变动,而即使v在技术上是变动的,哈罗德问题也 能出现。

至少有四种观点可以支持哈罗德资本—产出比固定的看法:(注:Jones An Introduction to Modern Theories of Economic Growth McGraw-Hill,1976 ,P73。

)(1)资本—产出比的固定是技 术的结果。哈罗德的模型已被经常用这种方法解释,虽然似乎很少有理由相信这是他所指的 意 思。(2)资本—产出比多少能有一些变动,但不足以保证有保证的增长率和自然增长率会一 致。(3)资本和劳动在技术上说是可以替代的,但实际上v的固定由于要素价格,特别是利率 缺 乏易变性。这种解释极似哈罗德实际上所写的东西,同时也可解释为一种基本上属于凯恩斯 主义的看法。(4)长期的利率决定于福利的需要,没有理由使它调整到符合于使有保证率和 自然率相等的适当值v的水平。这是哈罗德在其1960年论文(注:Harrod,R.F.‘Second Essay in Dynamic Theory’E.J 1960,pp.277-93.

)对他提出的主张的一种解释, 后来又把重点放在利率变动的可能程度上。

总之,用资本和劳动彼此不能替代和资本—产出比随意假定为一种技术常数的情况来解释 哈罗德的理论是不适当的。哈罗德是充分理解技术替代的可能性的,但他认为如果货币和资 本 市场不能够使利率变动(哈罗德论证需要利率的持续下降)以保证“黄金时代”到来和存在的 话,建立在资本—产出比不变的假定上的分析是富有成果的。即使v在技术上能够变动但 却被比较缺乏易变性的利率所制约,哈罗德的问题也能出现。

(二)比较

新古典增长模型与哈罗德模型的结论之所以不同,原因在于模型中的假设条件。前者假设 资本和劳动在生产上是可以相互替代的,而后者则作了资本与劳动不能替代的假设。在哈罗 德模型中,v被认为是一个常数。即要想生产一定量的Y,必须具备一定量的K,因为v=K/Y= 常数。这意味着K不能被L所代替;否则,就不需要一定量的K来生产一定量的Y了。在新古典 模型增长模式中,sf(k)线可以和nk线相交于任何一个均衡点。由于参数s和n都是外部决定 的变量,因此,为使社会处于稳定增长状态,即使sf(k)和nk不相等,可以通过改变k=K/L的 数值来做到。也就是说,sf(k)和nk可以相交于任何k的数值上。这意味着k和L是可以相互替 代 的。但是并不能由此认为,是因为索洛采用了连续总体生产函数,假设劳动和资本可以互相 替代,才解决了经济增长模式的稳定性问题;哈罗德模式之所以不稳定,是因为哈罗德采用 了固定系数生产函数,假设资本和劳动不能替代。实际上,哈罗德的不稳定问题之所以会在 新古典经济增长模式中消失,是因为新古典模式假定事前储蓄等于事前投资,没有独立的投 资函数,不象哈罗德模型那样,强调预期的作用。如果采用一个独立的投资函数,哈罗德的 “刃锋”问题会立即在索洛模型中出现。

在分析哈罗德—多马模式时可以看出,其模式中有两个主要难题:一个是没有任何理由使 有保证的增长率(s/v[,r])一定要等于自然增长率;而且也没有机制使其最终可以相等。另一 个是有保证的增长率,加上若干“缥缈”的企业家预期,天生就不稳定。索洛放松了哈罗德 模型中的假定,其经济增长模式的主要结论——经济增长逐渐收敛且均衡增长途径按自然率 (n)进行——完全回避了这些问题。

在新古典模型中,平衡增长意味着sf(k)=nk或sf(k)/k=n(3.1)

用Y/L代替f(k),K/L代替k,式(3.1)化简为sY/K=n (3.2)

式中Y/K=1/v,所以式(3.2)即为s/v=n。按照哈罗德的术语,均衡增长的资本—劳动比率(K[*])与每位劳动者产出(y[*])一起表示有保证的增长率等于自然增长率。所以“对有保证率和 自然率的反对意见”在索洛模式中已不再是一个问题。索洛的均衡条件与哈罗德的恒等式是 等价的。(注:邹刚:《增长理论的新进展》,载茅于轼、汤敏主编《现代经济学前沿专题》第二辑, 商务印书馆。)

理由很简单,在哈罗德模式中,s、v和n都是固定的常数,而索洛的模式所假设 的连续总体生产函数,表示资本—劳动比率可获得“一连串”的数值,经济因而可以调整到 那 种能确保有保证的增长率等于自然增长率的特殊资本—产出比值上。用图1说明这个问题。

由式(3.1)可得f(k)=n/s·k,在图1中,平衡增长的存在是与资本—劳动比K[*]同直线nk和s f(k)的交点相关联的,或是与每一工人的生产函数f(k)和按斜率n/s作出的直线交点(图中D 点 )相关联的。任何一条从原点到每一工人生产函数直线(如OA)的斜率,就是资本—产出比 倒数即1/v。因而,资本—劳动比和每一工人的产出一起,意味着n/s=1/v,即s/v=n。这意 味着哈罗德第一问题已被解决。对每一劳动者生产函数上的每一点,均相应的有一个不同的 资本—产出比,并且,索洛的调整机制保证最后可获得相称的资本—劳动比,因而也可达到 相称的资本—产出比。索洛的均衡条件与哈罗德的恒等式是等价的。

但在前面的分析中,我们指出哈罗德—多马模型中固定的资本—产出比并非技术性的问题 ,而是着眼于利率或利润率为产生变动的资本—劳动比而进行平滑调整的必然性。用图2加 以说明。

在图2中,平衡增长的轨道意味着资本—劳动比为K[*](即H点上sf(k)=nk,或G点上f(k)=n/s ·k)如图中所示,假定实际的资本—劳动比是K[-1]。在这一点上,意味着每一工人的储蓄大 于nk,因此存在着资本—劳动比升高的趋势。根据边际生产力理论,生产函数上每一点的斜 率,即是与此点相称的资本—劳动比的利润率,如K[-1]这点的利润率是由切线AB的斜率决定 的。均衡增长要求工资率和利润率从AB的斜率所决定的水平极大地下降至EF的斜率所决定的 水平。而且,资本—劳动比不会立即从K[-1]“跳跃”到K[*]——它是渐进的。这意味着,在切 线AB围绕着曲线f(k)“移动”到它与EF重合为止的过程中,利润率必须平滑地下降。要素价 格、实际工资率和资本的实际租金率必须及时调整,以便出清市场。在索洛模式中,无须拘 泥于著名的凯恩斯刚性工资和流动性的陷阱等困难,以探讨资本与劳动市场是否具有充分的 信息与知识,使每位劳动者产出与每位劳动者资本是否缓和地(可能大幅度地)转变至均衡增 长的状态(分别为y[*]和K[*])。索洛的方法“直接与哈罗德的见解,即为维持均衡将需要利息 率永久性下降的说法相抵触”。(注:Solow,R.M.A Contribution to the theory of Economic Growth Q.J.E,1956,第83 页。 )实际上利息率的下降是有界的并非漫无止境。另外,调整 过程可能花费多长的时间,以便在获得新的稳定状态之前,图2中K[-1]到K[*]的变化会要求利 息率和利润率长期稳定下降,这点并不清楚。刚性工资或流动性陷阱的引进当然可能阻止必 要的调整,刚性工资将允许在这个本来不可能产生失业的模型中出现失业。(注:在推演基本方程式时,隐含劳动的供给暗中被假定等于劳动的需求,在工资完全变动的 新古典假设下,模型中不可能出现失业。参阅solow A Contribution to the theory of Ec onomic Growth Q.J.E,1956,第七节。)

新古典研究方法完全回避了哈罗德第二问题。哈罗德的不稳定问题源于他的投资函数与暗 含的预期形成机制之间的交互影响,即允许在储蓄和投资计划之间的累积性背离。但新古典 模式完全摒弃了这种信息扭曲的缺点,不可能遭到这种信息扭曲的破坏。即无投资函数也无 企业家预期的作用,市场完全的和即时的发生作用。在哈罗德—多马经济增长模式中,不稳 定问题并不是由于“如果这一假定(即生产是在固定比例的条件下进行的)被抛弃掉的话,不 稳 定的平衡这个‘刃锋’概念似乎和这个假定一起消失,”(注:Solow,R.M.A Coutribution to the theory of Economic Growth Q.J.E,1956,第65 页。

)而是“索洛的模型之所以是稳定 的以及哈罗德的模型之所以是不稳定的,其原因并不是因为索洛考虑到资本与劳动替代的可 能性,而是由于对动态的调整和总产出的决定作出了不同的假定,哈罗德模式中,产出的变 化取决于有关企业家行为和预期行为的特殊假定。”(注:stiglitz.J.E.and Uzawa.H.Reading in the Modern theory of Economic Growth M.I.T press Mass 1969,第13页。)

通过上面分析,我们得出结论,哈罗德—多马模式的“刃锋”性质不是由于假设的刚性技 术。哈罗德—多马模式所需要的和大多数经济学家理性地承认一样,不是某种方式的生产函 数 ,特别地,它只需要一个一览表,在表中资本净边际生产力以这样一种方式下降,在这个方 式中存在一个对经济上可行的资本—劳动比(或资本—产出比)的限度。这个限度也许在投 资边际效率等于凯恩斯陷阱决定的利率这一点达到。也可以在资本净边际产品等于零这一点 达到(如果现实中已经建立预期,在这一点投资的边际率也等于零)。但限度一定要存在。

哈罗德的不稳定问题之所以会在新古典模型中消失,是因为不存在一个独立的投资函数, 该函数产生于这一假定,即事前储蓄等于事前的投资,亦即通过一个无所不知和无所不能的 政府的货币和财政政策,使储蓄和投资能维持永久的恒等。“尽管以新古典的生产函数代替 了 不变资本—产出比的假定,但是一旦引进一个独立的投资函数,哈罗德的不稳定问题会立即 在索洛的模型中重现。”

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

“边缘前沿”问题研究_生产函数论文
下载Doc文档

猜你喜欢