义务教育阶段国家数学课程标准目标分析_数学论文

义务教育阶段国家《数学课程标准》目标分析,本文主要内容关键词为:课程标准论文,义务教育阶段论文,目标论文,数学论文,国家论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

义务教育阶段国家《数学课程标准》(实验稿)(以下简称《标准》)已在实验区展开实验,为使实验工作顺利进行,为进一步推广实验提供参考资料,本文将从基础教育课程改革的理念、课程目标的陈述动词、知识观和学生观等六方面分析《标准》的目标体系.

1 从基础教育课程改革理念看《标准》的目标体系

义务教育课程改革的基本理念强调,要面向全体学生,确定学生在教育中的主体地位,尊重学生的人格,遵循学生身心发展的规律,重视学生创新精神和实践能力的培养,为学生的全面发展和终身发展服务.

在《标准》中的具体体现是:(1)改变了以往课程只注重知识传授的倾向,使学生通过数学过程获得基础知识与基本技能,这一过程也是学生学会学习和形成正确价值观的过程;(2)改变数学课程结构过于强调学科本位,整体设置九年一贯的数学课程和课时比例,具有均衡性和选择性;(3)改变课程内容“难、繁、偏、旧”,过于注重课本知识的现状,加强数学与学生生活以及现代社会生活和科技发展的联系,精选学生终生必备的知识和技能;(4)改变数学课程实施过分强调接受学习,死记硬背的、机械训练的现状,倡导学生自主参与、勤于动手、乐于探索、收集处理信息、获取新知识、分析和解决问题、合作与交流的能力.

整体原理是系统方法论的基本出发点,它揭示出:任何系统都是有结构的,即组成系统的要素是相互关联的,它们之间受一定规律的制约,不能独立地考察一个要素,应把要素置于系统之中去考察.为把义务教育课程改革的理念转化为现实的行动,制定完整的目标体系是关键.《标准》中对数学课程目标的陈述分为:横向目标(包括:知识与技能、数学思考、解决问题、情感与态度),纵向目标(根据横向目标提出分学段目标),横纵结合体现出课程目标的整体性.(如下图)

《数学教学大纲》(下称《大纲》)对数学课程目标陈述为:总体教学目的,知识点教学目的.数学教学目标只对知识、技能、能力、个性品质、辩证唯物主义观点进行了描述,而对“情感与态度”、“数学思考”目标未提及,所以说《大纲》中的目标体系是不够完整的.

2 从课程目标的陈述动词看《标准》的目标体系

多年以来,我国的教育目标陈述存在空泛的现象,缺乏明确的指向,也很难观察到个体对应的行为.这样的目标陈述不仅造成执行者的困惑,也难于具体操作.《标准》中陈述课程目标的动词分成两类:第一类,刻画知识与技能目标动词(即结果性目标动词),包括“了解(认知)、理解、掌握、灵活运用”等;第二类,刻画数学活动水平过程性目标动词(即体验性目标动词),包括“经历(感受)、体验(体会)、探索”等.这些动词的使用恰当描述了《标准》对学生在数学思考、解决问题以及情感与态度目标方向的要求.

《大纲》仅仅是数学知识的简单罗列,仅仅注明哪个该学,哪个不该学,了解、理解、掌握、灵活运用的解释笼统、模糊,不便于实际教学把握.《标准》作为度量数学教学质量的一条准绳,作为评价的依据,它对课程目标的描述是明确、具体、可操作的.

陈述课程目标的动词对比表

从上述对比中我们可以看到,《标准》与《大纲》相比,在动词的使用上更合理.《标准》中对于不好操作的描述配以实例.如:第三学段,空间与图形——图形的旋转目标是探索图形之间的变换关系(轴对称、平移、旋转及其组合),并配以实例说明如何探索:请说明下面的乙树是怎样由甲树变换得到的?

《标准》最终要检验的是学生是否达到了预期的学习结果,而不是教师有没有完成某一任务或是否达到某一目标.因此,内容标准的陈述是以学生为出发点的,目标行为主体是学生,而不是教师.“内容目标”没有采用“使学生……”、“提高学生……”、“培养学生……”等陈述方法.

3 从知识观和学生观看《标准》的目标体系

我国当前课程改革的教育价值观是:为了中华民族的振兴,为了每一个学生的发展,课程改革的根本任务是构建符合素质教育要求的新的基础教育课程体系.《标准》确定的课程目标是基于新的知识观和新的学生观.

辩证唯物主义认为,知识有确定的一面,也有不确定的一面.确定的一面是指,人的认识是客观的,认识作为客观世界在人脑的反映,它具有确定的内容,但不能视为凝固起来供人掌握和储存的东西.不确定性是指从认识的过程看,由于主体在观察事物的过程中所处的角度不同,所得到的结论也就不同,这正如“横看成岭侧成峰,远近高低各不同”.同时,这些结论有的是符合事实的,会随着认识的深入及学习者的变化而发生变化,其本质在于主体通过它而进行批判性、创造性的思维,并由此建构出新的意义.数学课程目标也就是要培养对已有的知识和认识方式不断做批判性反思的真正的求知者.因此,《标准》的目标体系摆脱单一的知识与技能取向.

现代课程设计要求解决的核心问题之一是发展学生的个性,这既是社会的要求也是广大受教育者的需要,课程设计者要把学生身心发展的个性化与社会化统一于课程目标之中.受传统思想文化的影响,以往课程目标忽视学生个体的合理需要(《大纲》中虽有培养学生良好个性品质的提法,但在具体实施中是不尽人意的)以致压制了学生的个性发展.

确定新的学生观,关注学生的个性发展是《标准》的又一重要目标.学生在数学学习中的个性表现为:用自己的学习方式,独立地或合作地获取知识,在获取知识的过程中展开自己的思维过程、尝试各种解决问题的方法并大胆地提出自己的想法;学生能够自我支配,自我调节和控制自己的学习过程.在学生个性的发展过程中,教师要帮助学生处理好学生和自我的关系(即战胜自我、自主探究)、学生与学生之间的关系(即合作交流).《标准》的体验性目标:“创设有助于学生自主学习的问题情景”,“关注学生的个体差异”的提法,都为发展学生个性创造了条件.

4 从“目的”转向“目标”看《标准》的目标体系

《标准》用“目标”(objective)取代《大纲》中的“目的”(goal).Objective一词原意是流水线上生产出的产品,这个词引入教育领域,突现出“用预期达到的教育结果来支配教育行动的思想”.因此,数学课程目标是预期的,是具体情景下学生行为变化的过程与结果,是用“学生学会了什么”、“掌握了什么”、“形成了什么”、“经历了什么”、“发展了什么”等来表述的.如:《标准》总体目标中解决问题目标的描述是:“初步学会从数学的角度提出问题,理解问题……”;“学会与人合作,并能与他人交流思维的过程和结果”;“经历观察、实验……等数学活动过程,发展合情推理能力……”.

“目的”一词的涵义与教育者的主观愿望等同,它通常是指某一社会或国家为实现教育目的,在教学领域给教师提出的一种概括性的总的需求.它是一种应然状态的理想,一种方向、指针.目标通常是可观察、可明确界定、可测量、可评价的,而且还有时间、情境等条件的限制,它是目的的具体化,是可操作的.目的与目标的关系是一般与特殊、普遍要求与具体结果的关系,而且目标是一种实然状的实践.因此,用课程目标一词是科学合理、规范的,也是适切的.

5 从建构主义课程观看《标准》的目标体系

建构主义(constructivism)源自儿童认知发展的理论.由于个体的认知发展与学习过程密切相关,利用建构主义比较好地说明人类学习过程的认知规律,既较好地说明学习如何发生、意义如何建构、概念如何形成,以及理想的学习环境包括哪些主要因素等等.建构主义对知识与学习的重新审视,引起了课程观与课程设计原则的更新.建构主义课程观强调用情节真实复杂的故事呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具.《标准》中“知识与技能”(7-9学段)目标指出“经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程……”正是建构主义课程观的具体体现.

建构主义课程观主张为学生进行探索和建构知识提供大量认知工具,以拓展学习时空,增强学习能力,不断开拓学生的思维、创新与实践的空间,以支持学生在学习与生活中的成功.“经历从日常生活中抽象出数的过程,认识万以内的数……”、“能运用生活经验,对有关的数字信息做出解释……”、“能探索出解决问题的有效方法……”“……获得成功的体验……”等.对数学课程目标的描述与建构主义课程观是相符的.

建构主义的课程设计观不同于以培养一般知识技能为目的的内容抽象的课程设计观,即知识本位课程观,它也跟传统的重事实与原理知识的传授并以教材为中心的课程设计是完全不同的.因此,建构主义课程观下的目标是结果性目标与体验性目标的结合.

6 从知识与能力之间关系看《标准》的目标体系

传统的学校课程是建立在传统知识观的基础之上的,它强调教学过程是一种特殊的认识过程.教师是知识的掌握者,他能够预先为学生设计出学习最终应达到的结果,即数学课程的目标.它基于假设:只要教育教学的程序是科学的,这一最终目标是一定能达到的.教师向学生传授“静态”的知识点,对于“动态”的获取知识的过程未充分地体现出来,致使教学实践中隔裂了知识与能力共同发展之间的关系.以往我们总试图把确定的知识传授给学生,但实践证明,没有任何知识能够完全凭借“灌输”而为学生掌握,知识的获得总是个体通过一定能力的活动所得到的结果,知识在量上的积累并不必然导致能力的提高.因此,一定的能力是学生获取知识的必要条件.反过来,不存在完全不依赖于任何知识的能力,学生只能够根据自己已有的知识去进行各种各样的活动.调查研究中我们发现,教师进行探究教学时,单纯为探究而探究,从原来的“满堂灌”转变为“满堂问”、“满堂论”,忽视了知识的获取及知识本身在学生身上的发展,出现了单纯重能力培养而忽视知识获取的现象,这种对《标准》目标体系理解上的偏差,应该引起我们的高度重视.

《标准》目标为分知识与技能、数学思考、解决问题、情感与态度四个目标领域,这四个目标领域是辩证的统一.情感与态度为学生获取知识、形成技能提供了动力保障;知识与技能是数学思考和解决问题的基础;会数学的思考、解决问题是学生独立获取知识,形成技能及终身学习的能力.因此,四个目标构成了完整的目标体系,四者缺一不可.它们之间的关系如图所示.

数学课程目标是数学课程改革、设计、实施和评价各个活动环节的重要指导原则.对教师来说,理解课程目标是课程设计的首先一环.《标准》的目标体系是对学生的“最低”要求,但并不是降低了教育教学质量,而是从学生的整体发展考虑,在“最低”要求的基础上,给每个学生自主的、多样的发展空间和时间.这也体现出以学生发展为本的原则,即全体学生都能生动活泼的主动的发展,使他们的潜能得到最大限度的开发,整体素质得到全面的提高,个性得到充分的发展,为学生今后能够适应社会发展的需要和终身发展奠定坚实的基础.

标签:;  ;  ;  ;  ;  ;  ;  ;  

义务教育阶段国家数学课程标准目标分析_数学论文
下载Doc文档

猜你喜欢