摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。与此同时,这种类型的储罐在实际应用过程中,其整体刚度比较低,同时具有一定柔性特征。储罐基础产生的不均匀沉降要求较高,如果基础有较大的不均匀沉降,就会直接影响到储罐的正常使用。本文对大型储罐的基础设计及构造进行研究。
关键词:大型储罐;基础设计;构造
1 大型储罐的基础设计形式
1.1 护坡式基础
当天然地基承载力特征值大于或等于基底平均压力、地基变形满足规范要求的允许值且场地不收限制时,可采用护坡式基础。护坡式基础是在储罐底面四周用素土或碎石沿着基础砌成护坡。其优点是工程投资少、施工方便;缺点是对调整地基不均匀沉降作用小效果差,且占地面积大。如果基础大量沉降后,周围护坡破裂,罐底各层填料往往在大于后流失,造成基底局部掏空,所以在这种背景下,护坡式基础在设计已经不常见。
1.2 外环墙式基础
外环墙式基础是将钢筋混凝土环墙离开储罐外壁一定距离,罐体坐落在由砂石土构成的基础上。其优点是受力状态较好,具有一定的稳定性,较环墙式基础省钢筋和水泥;缺点是调整不均匀沉降的能力较差,当罐壁下节点处的下沉量低于外环墙顶时易造成两者之间的凹陷。一般用于车间内部生产原料储罐,容积控制在1000m3以内。
1.3 环墙式基础
环墙式基础在设计中使用较多,系将储罐壁板直接安装在钢筋混凝土环墙上,大部分用与软和中软场地的浮顶罐及内浮顶罐。环墙式基础在实际应用过程中,其最明显的优点之一就是在平面抗弯的刚度程度上比较大,这样有利于调整不均匀沉降问题,减少罐壁的变形。罐体自身的荷载在某种程度上可以给地基传递相对较均匀的压力。与此同时,使用时可以调整中心和边缘的沉降,防止环墙内砂垫层或土的侧向变形或流散,整体的稳定性较好,抗震效果较理想,有利于为施工提供便利操作方式。减少罐底潮气对罐底板的腐蚀,并且有利于事故的处理。但是环墙基础在实际应用过程中,还存在一定的缺点。最明显的缺点问题之一就是环墙的竖向抗力刚度比环墙内填料相差较大,受力状态不均匀,导致罐壁和罐底的受力效果受到影响,达不到最理想的状态。除此之外,钢筋及水泥等材料消耗较大,在其中所需要投入的成本也比较高。
1.4 钢筋混凝土桩筏基础
在地基土相对比较软弱,地基处理有困难或不做处理时,宜采用钢筋混凝土桩筏基础,一般是由底部桩基、钢筋混凝土承台板及环墙组合而成的基础形式。桩筏基础承载力相对比较高,整体性也比较良好,具有非常良好的抵抗地基不均匀沉降的优势特征。由于储罐的直径比较大,承台要满足刚性基础的要求的情况下设计的较厚,桩基数量也较多,故其最大的缺点就是对钢筋及水泥等材料的整体消耗比较大,投资规模较大。
2 储罐基础地基处理方法
在不良土质或特殊地基上建造大型储罐时,如果对原有地基不做任何处理,则储罐的安全会经常出现各种问题。这时,必须采取措施改善地基土的力学性能,提高土的抗剪强度,改善土的压缩性能,改善饱和土的渗透性,改善砂土的动力特性等,使其在上部结构荷载作用下不发生破坏或出现过大的变形,保证储罐的正常使用。常用的地基处理方法有换填垫层法、充水预压法、强夯法和强夯置换法、振冲法、砂石桩法、水泥粉煤灰碎石桩法、水泥土搅拌法、绘图挤密桩法、钢筋混凝土桩复核地基法等。储罐地基处理方法的选定应根据储罐对地基的要求,结合地质勘查报告选定几种地基处理方案。
期刊文章分类查询,尽在期刊图书馆对初步选出的方案分别从加固原理、适用范围、处理效果、工程进度、材料来源、设备条件、工程费用等进行反复综合研究对比,选择最合适的地基处理方法。方案确定后,还应根据现有条件进行相应的现场实验及施工,以检验设计参数和处理效果。当岩土工程条件较为复杂时,可由两种或多种地基处理措施组成的综合处理方法将会达到较好的地基处理效果。
3 储罐基础的构造及材料要求
3.1 沥青砂绝缘层
储罐基础顶面应设置沥青砂绝缘层。利用沥青砂绝缘层的根本目的就是为了实现对罐底腐蚀问题的提前预防和有效阻止。与此同时,通过这种基础设计模式在其中科学合理的利用,还可以使其下面的砂石土填料层稳固,尽可能减少透水性,避免出现严重的渗漏现象,避免罐底遭受到严重的腐蚀。除此之外,利用沥青砂绝缘层,有利于对罐底进行方便快捷的铺设和施工操作。沥青砂绝缘层所用的沥青材料,主要是根据储罐内储存介质的温度,按沥青的软化点来选用。当储罐内介质温度低于80℃时,宜采用60号甲、乙道路石油沥青,也可采用30号甲、乙建筑石油沥青;当储罐内介质温度等于或高于80℃时,宜采用30号甲、乙建筑石油沥青。沥青砂绝缘层的配合比一般为(质量比)7::9,即沥青7:中砂93(并掺一部分滑石粉),砂石在其中的整个含泥量不能够超过5%。当储罐内储存介质最高温度高于90℃时,罐基础表面应采取隔热措施。在施工中要注意的一点就是,在针对沥青或者是砂石进行搅拌的时候,应当尽可能将砂石进行加热处理,一般需要加热到100~150℃左右。另外,石油沥青也需要进行加热操作,一般需要加热到160℃~180℃,如果是在冬天的时候,加热温度还需要更高一些。在这一温度的基础上,需要立即将砂石和石油沥青进行拌合,保证拌合的均匀性,紧接着可以对其进行浇筑,提高使用率。
3.2 中粗砂垫层
沥青砂绝缘层下面应设置中粗砂垫层,砂垫层宜采用质地坚硬的中、粗砂,亦可采用最大粒径不超过20mm的砂石混合物,不宜采用细砂,不得采用粉砂和冰结砂。砂中不得含植物残体、垃圾等杂质,应级配良好。砂垫层的作用,主要是使压力分布均匀,调整和减少地基的不均匀沉降;当厚度不小于300mm时,可防止地下毛细管水的渗入,当底板开裂时,可作为漏油显示信号的通道。对于有的储罐基础因垫砂厚度太大需要填素填土是,上料中有机质含量不得超过5%,不得含有冻土或膨胀土。当填土中含有碎石时,其粒径不宜大于50mm。中粗砂垫层厚度不宜小于300mm,压实系数不应小于0.96。中粗砂垫层下回填土层的压实系数不应小于0.96。
3.3 其他构造要求
储罐基础顶面周边高出设计地面高度(不含预抬高的高度)不宜小于300mm。储罐基础应严储罐周均匀设置泄露孔,间距宜为10~15m,孔径宜为Φ50,预埋管向外形成的坡道不得小于5%。在环墙内侧预埋管入库应设粒径为20~40mm的卵石组成反滤层和钢筋滤网,且预埋管的出口宜高出设计地面。钢筋混凝土环墙不宜开缺口,当必须留缺口时环向钢筋应错开截断,待罐体安装结束后应采用比环墙混凝土强度等级高一级的微膨胀混凝土立即将缺口封堵密实。环墙弧长大于40m时,宜留宽度为900~1000mm的后浇带。储罐周边的操作平台基础应与钢筋混凝土环墙基础分开,管线的连接也要待试水预压完成后再施工。
结束语
大型储罐在实现基础设计的时候,由于会受到不均匀、材料质量不达标等各种不同类型因素的影响,导致大型储罐在实际应用过程中的效果并不是很理想。在针对这一问题进行处理的时候,要保证与储罐实际情况进行结合,将施工现场、地理位置、地质条件等要素综合起来,这样不仅有利于保证基础设计效果,而且还能够为储罐在运行过程中的安全性和稳定性提供保障。
参考文献:
[1]《钢制储罐地基基础设计规范》(GB50473-2008)及条文说明.
[2]《钢制储罐地基处理技术规范》(GB/T50756-2012)及条文说明.
[3]徐至钧.等,编著.大型储罐基础设计与地基处理.中国石化出版社,1999(11).
论文作者:丁园
论文发表刊物:《基层建设》2019年第25期
论文发表时间:2019/12/9
标签:储罐论文; 基础论文; 地基论文; 沥青论文; 钢筋混凝土论文; 砂石论文; 护坡论文; 《基层建设》2019年第25期论文;