证券市场羊群行为比较研究_股票论文

证券市场中羊群行为的比较研究,本文主要内容关键词为:羊群论文,证券市场论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

一、前言

金融市场中的羊群行为(Herding Behaviors)是一种特殊的非理性行为,它是指投资者在信息环境不确定的情况下,行为受到其他投资者的影响,模仿他人决策,或者过度依赖于舆论(即市场中的压倒多数的观念),而不考虑自己的信息的行为。由于羊群行为涉及多个投资主体的相关性行为,对于市场的稳定性、效率有很大影响,也和金融危机有密切的关系(Choe et al,1999;Kaminsky et al,1999),因此,羊群行为引起了学术界和政府监管部门的广泛关注。

目前已经由许多关于羊群行为的理论模型,如Scharftstein et al(1990)提出的声誉羊群行为(Reputational herd)模型、Bikhchandaniet al(1992)提出的信息流(Informational Cascades)模型、Banerjee(1992)提出的序列性(Sequential)羊群行为模型,这些模型从不同角度对于羊群行为的效率、理性等问题进行了探讨。相对于理论研究,已有的羊群行为的实证研究比较薄弱。比较有代表性的研究是Lakonishok et al(1990)对于美国证券市场养老基金的羊群效应的研究。该文提出了用买卖双方交易量的不均衡来测度羊群行为,这种方法被后面的许多学者引用,并得到了一些改进。例如,Wermers(1999)对他们的羊群行为的定义进行了修正。

目前市场中的各种基金(如西方的养老基金和共同基金、中国的证券投资基金)使用他人的资产投资,受到一定程度的监督和制约,因此必须定期公开持仓信息和交易信息,而其他投资者则没有这种义务公开信息。Lakonishok et al(1990)和Wermers(1999)提出的羊群行为的测度只能考察前者而不能考察后者的羊群行为,因此具有一定的局限性。如果用公开的数据(价格)来研究羊群行为成为一个很重要的问题。William等(1995)对该问题作了研究,他认为如金融市场中确实存在羊群行为,大多数个人投资者的看法趋向于市场舆论,那么一个合理的推断是:羊群行为显著时的个股的收益率将不会太偏离市场的收益率。因此可以用分散化指标(即个股收益率对于资产组合平均收益率的标准方差)来度量羊群行为,该指标对个股收益率相对资产组合的平均收益率的接近程度进行了定量化处理。

Bikhchandani et al(1992)的理论模型认为在市场价格波动大(此时信息不确定性很大),投资者最可能跟从市场舆论,此时羊群行为应该最明显。本文将对该模进行检验。即通过检验市场价格波动很大和波动平均水平下的分散化指标的相对大小来检验羊群行业的存在性。本文的结构如下:第二、三部分说明羊群行为的检验方法和使用的数据,第四、五部分分别使用中国和美国的日收益率数据来检验羊群行为。第六部分总结。

二、羊群行为的检验方法

(一)分散度指标

设资产组合S总共有n只股票,r[,i]是股票i的收益率,是n只股票的平均收益率。S的收益率的分散度定义为:

(1)

该指标通过定量化个股收益率和资产组合收益率的一致程度来刻画羊群行为的关键特征。当整个市场行为完全由羊群行为决定时,价格应该一致移动,分散度为0。如有一只股票的收益率偏离市场收益率,分散化程度增加。用分散度来测度羊群行为具有一个最大的优点,即它需要的数据容易获得且计算方法简单,这是其他羊群行为测度所不具有的。但是它也存在一个缺陷,即它是对投资者羊群行为的一个很保守的测度,低估了羊群行为的程度。只有当大多数投资者对于所有股票都表现出强烈的羊群行为时,大多数股票的收益率才可能表现出趋同性。William(1995)认为在回归系数为正时,理性资产定价模型成立,不存在羊群行为。但是他没有充分考虑分散度测度的保守性。本文认为正的回归系数并不能直接拒绝羊群行为的存在。分散度的绝对值意义不大,有意义的是分散度的相对大小。因此在对检验结果进行分析时,应充分考虑该偏差的存在,并将重点放在相对值的比较上。比较分为两个方面进行,一是将中国市场数据和美国市场数据、进行比较,得出我国羊群行为和美国羊群行为的差异;二是将市场收益率极低和极高时的羊群行为进行比较,得出投资者在两者极端情况下的行为模型差异。

(二)市场压力下的羊群行为检验

在市场存在压力(价格波动剧烈)时,理性资产定价模型和羊群行为模型的区别最为明显。理性资产定价模型认为由于不同的个股收益率对于市场收益率的敏感程度不同,市场压力将导致分散化程度增加。而羊群行为模型认为在市场压力的情况下,分散化程度减少。本文将使用日收益率来计算分散度指标。

使用下面的回归方程来检验极端收益率下的分散度和一般收益率下分散度是否存在差异:

D[,t]=α+β[,1]C[L,t]+β[,2]C[H,t]+ε[,t](2)

其中C[L,t]和C[H,t]为表示市场是否为极端波动的哑元变量。系数α表示的是样本中哑元元素所包括区域外的平均分散化指标。由于市场压力并无统一标准,我们使用两个标准(1%和5%)来定义极端的市场变化。1%(5%)的标准将C[L,t],C[H,t]限制在收益率分布函数的1%和5%的最低和最高的区域。C[L,t]和C[H,t]定义如下:

用r[m,t]表示市场在时间t时的收益率,用r[m](pl)和r[m](ph)表示市场收益率分布的p分位数。在1%标准时,pl=0.01,ph=0.99;在5%的标准时,pl=0.05,ph=0.95

如r[m,t]≤r[m](pl),C[L,t]=1;否则,C[L,t]=0。

如r[m,t]>r[m](ph),C[H,t]=1;否则,C[H,t]=0。

如果β[,1]<0和β[,2]<0,则结论支持羊群行为假设(注:考虑到上文所述的分散度指标的保守性,β[,1]〉0和β[,2]>0并不能一定否认羊群行为假设。);如β[,2]>β[,1],表明市场收益率极高时的羊群行为低于市场收益率极低时的羊群行为;如β[,2]<β[,1],表明市场收益率极低高时的羊群行为低于市场收益率极高低时的羊群行为。

三、数据

中国市场的上市公司个股和大盘的收益率数据来自由香港理工大学中国会计与金融研究中心和深圳市泰安信息技术有限公司联合开发的《中国股票市场研究数据库》(China Stock Market & Accounting Res-earch,简称 CSMAR),该数据库按照国际标准数据库(CRSP和COMURSTAT)的调整技术计算个股收益率,对于上市公司的红利、配股、拆细等因素都进行了相应的调整,使得回报率数据具有可比性和可信性。采样区间从1992年1月2日到2000年12月31日,包括了沪深两地所有上市公司的日收益率和月收益率数据(采用不考虑现金再投资的收益率)。资产组合的收益率按照平均加权方法计算,分散化指标根据公式(1)计算。为了检验行业中的羊群行为,对于行业资产组合也分别计算了分散化系数,按照CSMAR的分类标准公司将所有上市公司分为6类(金融、公用事业、房地产、综合、工业、商业)。

美国市场的数据来自由S&P公司提供的COMPUSFAT数据库,我们选择构成标准普尔500(Standard & Pool500)指数的500只在美国证券市场交易的股票为样本。为与中国的数据具有可比性,取样时间为1992年1月到2000年12月,与中国证券市场的取样时间一致。行业资产组合按照COMPUSTAT的经济部门(economic sector)分类标准公司将所有上市公司分为10类(能源,材料,工业,服务业、零售业、医卫、金融、信息技术、远处通讯服务和公用事业)。表1给出了分散度的平均水平、标准差和用来计算这些统计数的平均公司数。

表1 数据的基本统计分析(%)

 中国市场数据 美国市场数据

行业

 D

平均公司数

行业

   D

平均公司数

所有公司

2.43 466

所有公司 1.71

500

金融1.66 5 能源

1.2626

公用事业

2.20 37 材料

1.2341

 房地产

2.19 23 工业

1.3970

 综合

 2.26 68服务业

1.6885

 工业

 2.44 282

零售业

1.13  36

 商业

 2.24

56 医卫

1.72  41

   金融

1.3371

 信息技术 2.7878

远程通讯服务1.9313

 公用事业 1.0639

在表1中可以观察到中国市场日收益率的分散度指标平均值为2.43%。从行业分布来看,金融业的分散度最低,只有1.66%;工业的分散度指标最高,平均分散度为2.45%。在美国市场中,整个市场日收益率的分散度平均值为1.71%,从行业上看,信息技术类的分散度指标最大,公用事业类的分散度指标最小。

四、中国市场羊群行为的检验结果

表2给出了使用公式(2)对于全样本和按照行业分组的子样本的回归结果。对于回归系数β[,1]和β[,2]下面的括号中给出了双尾t统计值。

表2对中国市场羊群行为的检验结果

在5%的水平上,所有行业的回归系数β[,1]和β[,2]显著为正,按照行业分组的子样本的回归系数也分别显著为正。即在市场收益率为5%的极端高水平时个股收益率表现出明显的分散;在市场收益率为5%的极端低水平时,个股收益率也表现出明显的分散。

在1%的标准下。所有行业的回归系数β[,2](0.01)显著为正,且大小约为β[,2](0.05)的两倍。也就是说,如果市场收益率为1%的极端高水平时,个股收益率表现出更加明显的分散。这表明,在市场极度上涨时,个股趋向于分散的状态,羊群行为减少。这和我国的大牛市中各行业、各板块轮流上涨,轮流领涨的现象吻合。β[,1](0.01)为负值(在统计上不显著),按行业分组的子样本的回归系数β[,1](0.01)有两个为负,四个为正。即市场收益率处于1%的极端低水平时,个股收益率反而表现出一定的集中。这表明在市场大幅度下跌时个股也许开始时趋向于分散,但是随着熊市的进一步深化,个股收益率反而表现出一致下跌的趋向。这个结果支持在中国市场的熊市中存在广泛的羊群行为。

比较β[,1]和β[,2]的相对大小,我们发现在5%的标准下,所有行业的β[,2]约为β[,1]的3倍,按行业分组的样本中β[,2]也均大于β[,1];在1%的标准下,所有行业的β[,1]为负而β[,2]显著为正,按行业分组的子样本中各行业的β[,2]也都大于β[,1]。因此,中国市场中市场极度走高时的羊群行为低于在市场极端下挫时的羊群行为。

从中可以推断,在市场大幅下挫的时候给投资者带来的抛售压力明显大于在市场上升时的给投资者带来的购买冲动。在市场大幅下挫时,大盘的走低使得大部分投资者当心自己的持有的股票价格也会大幅下挫,于是纷纷抛出股票,这种卖方的羊群行为反过来使得许多股票价格同时下降,这样形成了价格下降和抛售羊群行为之间的正反馈。但是在在市场大幅上升时,固然有一些投资者看好市场,大幅增仓,但是也有些投资者也许当心价格已经太高,不愿跟入。因此此时投资者的行为相对分散,跟风行为低于在熊市中的羊群行为。

对于这种行为模式进行更深入的思考,可以发现投资者在市场大幅下挫和在市场大幅上升时的行为差异来源于投资者对于损失和收益的不同态度。Kahsemen,Tvereky(1979)提出了著名的期望理论(prospeoct theory),其中一个最重要的发现是投资者对待损失和收益的态度存在明显的差异,一定数量的损失带来的负效应大于同样数量的收益带来的正效应。即,投资者在损失区域的风险厌恶程度大于在收益区域中的风险厌恶程度。可以用期望理论的观点来解释本文的结果:在市场大幅下挫中,投资者的损失厌恶程度大大增加,因此导致了上述的群体性抛售行为,在市场大幅上升时,投资者的收益偏好程度却没有对应地增加,因此导致了上述的相对分散的投资行为(有购入也有抛售)。

五、对美国市场羊群行为的检验结果

下面以构成美国标准普尔500指数的500只股票为研究对象,研究美国股票市场羊群行为的特征,以比较中国市场和西方市场的羊群行为的特征上的区别。表3给出了对美国标准普尔500股票分散度的日收益率回归结果。

表3 对美国标准普尔500股票羊群行为的检验结果

从表3可以发现,在极端10%和5%的水平上,全部行业以及分行业的子样本的回归系数β[,1]和β[,2]都显著为正(在置信度为1%的水平上)。即在大牛市和大熊市中的羊群行为程度都比较低。这个结果和中国市场的不一样。比较表4和表3可发现,中国的t统计值大部分都小于美国证券市场的t统计值,而且使用中国的数据的检验发现β[,1]为负值(虽然在统计上不显著)。因此可认为以美国为参照对象,我国个股收益率对于市场收益率的羊群行为程度高。这个结论定量地说明了相对于西方投资者比较成熟的投资理念,我国投资者的理性意识还不健全,跟风等各种非理性行为现象比较突出。该结论和对中国证券投资基金的羊群行为研究结果(宋军,吴冲峰,2001)一致。

从表4可以看出,在两种标准下β[,1]<β[,2]都成立,和我国市场的结果一致。这表明风险厌恶特征是所有投资者的共同心理特征,导致了无论在中国市场还是在美国市场都存在这种现象。

另外,我们对于中国市场和美国市场的月收益率数据也进行了计算和检验,结果和各自的日收益率的结果大致相同。

六、结论

本文使用个股收益率的分散度指标,利用公开的价格数据,对于我国证券市场的羊群行为进行了实证研究。该测度的优越性在于它需要的数据易于获得,计算方法简单;但是也存在一个问题,即它是对于投资者羊群行为的一个很保守的测度。本文研究充分考虑了分散度测度的特点,将重点放在分散度的相对大小的比较上。一方面,将中国市场和美国证券市场的实证结果进行比较,结果发现我国证券市场的羊群行为程度高于美国证券市场的羊群行为程度。另一方面将市场收益率处于极高和极低水平的分散度回归系数进行比较,结果发现在中国市场还是在美国市场都存在着市场收益率极低时的羊群行为程度高于在市场收益率极高时的羊群行为程度的现象,该结果可用期望理论中的决策者对于损失、收益的不同态度来解释。

标签:;  ;  

证券市场羊群行为比较研究_股票论文
下载Doc文档

猜你喜欢