摘要:用解析法计算液塑限试验数据,并将其编制成EXCEL表格并绘制图表至双对数坐标系,由此确定出的液限、塑限值,较传统方法方便、快捷、准确。
关键词:土工试验;EXCEL;液塑限;解析法;双对数;解析法
0 概述
土的液塑限指标是细粒土进行分类和定名的最基本指标,在土工试验中具有很重要的作用。这两个指标一般通过土的液塑限联合测定法进行测定,由其求得的液性指数在一定程度上反映了粘性土的结构特征,可用于评价土的强度和压缩性,也是获取一般粘性土地基承载力值的重要指标。因此,准确确定土壤的液塑限指标对工程具有很重要的意义。
按照 《土工试验规程》SL237-1999 (以下简称《规程》)的规定,该试验数据处理采用绘图——查图的方法。由于图形要绘在对数坐标下,绘制过程相当复杂,且绘图、查图过程中均有误差的产生,因此,该试验的数据既费时、费力,又难以保证精度。
本文通过解析法代替手工绘图、查图过程的数据处理方法,用EXCEL编写了相应的表格进行自动计算并并绘制图表至双对数坐标系,取得了良好的效果。
1.液塑限自动计算思路
繁琐的查图过程背后,实际上隐藏着一定的数学关系。只要把这种数学关系找出来,就可以在EXCEL中用简洁的数学运算代替查图操作。
EXCEL具有绘制曲线、折线、散点图等各种图表的功能,只要知道坐标,绘制图表是比较容易的。而液塑限用的是双对数坐标,双对数坐标系通常可以根据测试数据使用origin或matlab来绘制,在这里我选用应用最广泛的Excel完成液塑限试验中双对数坐标的绘制。如何将绘制双对数坐标系和将直线绘制到双对数坐标系是本文的难题。
算术坐标系:就是普通的笛卡儿坐标系,横纵的刻度都是是等距的。(举例来说:如果每1cm的长度都代表2,则刻度按照顺序1,3,5,7,9,11,13,15……) ;但一般情况下,刻度仍然是均匀的,按照0,1,2,3,4的顺序排列下去。
双对数坐标系,就是图的两个坐标轴的刻度均为对数刻度,这样一来的话,形如y=ax^b的指数曲线,在双对数曲线图中就表现为一条直线,b就是这条直线的斜率(这里的斜率并不是按数轴上的刻度值计算的,而是将坐标轴看成普通坐标轴,按坐标轴的单位长度计算的)。
可以这样来理解,将y=ax^b两边都取对数,得到:ln(y) = ln(a) + bln(x),令 = ln(y), = ln(x), 那么在对数曲线图中,得到的就是一条=+ b的直线,数轴的长度单位用的就是和的单位,但是“对数曲线图”的“对数”指的是刻度取对数,所以数轴上的值标的还是x和y的值,所以相邻长度单位上标的数值随数轴的延伸相差越大,也就是说每次增加1,但是x 增加的幅度却是按= ln(x)越来越大的。
对数坐标有几个特点,在应用时需特别注意:
(1) 标在对数坐标轴上的数值为真数。
(2) 坐标的原点为x=1,y=1,而不是零。因为1ogl=0。
(3) 由于0.01、0.1、1,10、100等的对数,分别为-2、-1、0、1、2等,所以在坐标纸上,每次数量级的距离是相等的。
(4) 在对数坐标上求斜率的方法,与笛卡儿坐标上的求法有所不同。这一点需要特别注意。在笛卡儿坐标上求斜率可直接由坐标度来度量,如斜率△Y/△X;而在双对数坐标上求斜率则不能直接由坐标度来度量,因为在对数坐标上标度的数值是真数而不是对数。因此双对数坐标纸上直线的斜率需要用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取。斜率:
x=a/b=(logy2-logy1)/( (logx2-logx1)
式中△h与△1的数值,即为用尺子测量而得的线段长度。
(5) 在双对数坐标上,直线与x=1的纵轴相交处的y值,即为原方程 中的 值,若所标绘的直线需延长很远才能与x=1的纵轴相交,则可求得斜度x之后,在直线上任取一组数据x和y,代入原方程 y=axn中,也可求得 值
EXCEL绘制双对数坐标系
3.将算术坐标系统改为双对数坐标系
上图出现的坐标系是算术坐标系,我们需要将其改为双对数坐标系,然后将其它数据在双对数坐标系上绘制成直线。
右击X轴,出现如图快捷菜单
4.其它直线段的绘制
注意到上图坐标系里只有一条直线(即A线),下面添加一条直线(B线)。点击直线,在出现的快捷菜单里选“源数据”如下图。
图1 EXCEL绘制的双对数坐标系
论文作者:周常欣
论文发表刊物:《基层建设》2016年24期8月下
论文发表时间:2016/12/7
标签:对数论文; 坐标系论文; 标上论文; 斜率论文; 直线论文; 刻度论文; 坐标论文; 《基层建设》2016年24期8月下论文;