多热源合成SiC传热传质规律的数值模拟及实验研究

多热源合成SiC传热传质规律的数值模拟及实验研究

陈杰[1]2004年在《多热源合成SiC传热传质规律的数值模拟及实验研究》文中研究指明天津大学硕士学位论文多热源合成iC传热传质规律的数值模拟及实验研究(申请硕士学位)

陈杰[2]2011年在《多热源多向流体系碳化硅材料制备理论及应用》文中指出碳化硅(SiC )具有的高密度、高纯度、高结晶性、高均匀性,广泛应用于冶金、石油、化工、航空航天、机械、微电子等行业。中国是全球碳化硅产品的第一生产大国和出口大国,然而能耗高、物耗高、产量低、品质差、生产不安全一直是制约我国碳化硅产业高速发展的主要问题,提高碳化硅合成热效率,降低产品能耗,生产出高品位、高附加值的碳化硅产品是碳化硅制备亟待解决的技术难题。论文在国家自然科学基金(51074123、50174046)和陕西省教育厅专项科研基金(08JK347、05JK254)的资助下,通过数值模拟及实验,系统地研究了多热源多向流体系制备SiC新技术节能、提质、增产、降耗的关键理论与方法,实践表明,采用多热源多向流合成技术,单炉产量提高48.1%,特、一级品率提高30%,节能10%以上,并且杜绝生产中频繁喷炉等不安全事故的发生。论文研究不仅为SiC合成技术提供理论和方法学上的指导,对于提升西部地区矿产资源开发与加工的技术含量有着极其重要的意义。通过对碳化硅合成过程的传热学分析,建立了多热源多向流体系合成碳化硅温度场的数学模型,提出了SiC合成炉温度场属于平面有内热源变物性非稳态导热,炉体边界属给定温度边界,热源边界属于常热流通量边界条件。根据化学反应程度及常用反应配比,通过线性分段拟和、线性插值、加权处理等方法,以温度作为控制条件,确定了不同温度条件下等效物质的热物性参数。基于有限单元法求解瞬态温度场的原理分析,建立了优化的有限元模型,研究了多热源合成SiC合成炉温度场的演变规律。研究发现,随着合成时间的延长,高温等温面逐渐向外扩展,适合生成SiC的温区面积逐渐增大,但是过长的合成时间不但增加能耗,而且会导致SiC产品产率降低,应控制合理的反应时间,使SiC适量分解,可以合成大量的高致密SiC产品;随着表面负荷增大,热源温度逐渐增加,各温区等温线逐渐向外移动,使得高温区(1800~2600℃)面积逐渐增大。功率过高,会导致热源温度过高,从而导致热源周围已生成的SiC大量分解,从而降低产品的产量而增加产品的能耗。基于数值模拟和实验,揭示了多热源体系内多方向能量流及物质流的传递与扩散动力学机理。研究表明,多热源合成中能否合成高致密碳化硅主要取决于Si蒸汽、SiO、SiO_2、Si_2C、SiC_2等气相物质的扩散速率;碳化硅合成过程中气相物质的物理气相沉积作用,是导致多热源合成碳化硅晶体高纯化、高致密化以及高结晶性的根本原因;多热源之间的热场迭加和热源屏蔽是多热源炉节能、增产、降耗的本质原因。基于供电参数及炉体参数对温度场的影响,建立了给定功率条件下的多热源合成炉热源数目的判定模型。通过青海通海碳化硅厂工业试验,表明判定模型能够较好的预测多热源合成SiC最优选的热源数目。该判定模型为本理论的工业实际应用提供了关键设计参数的科学判据。通过多热源合成实验,系统研究了合成时间、表面负荷等合成参数对合成产品的影响规律,采用X射线衍射分析以及扫描电镜分析了合成产品的物相及微观结构并与单热源合成产品进行了对比。研究表明,多热源合成碳化硅的提质、节能、降耗关键在于多热源多向流体系均化了温度场,生成SiC的高温区面积增大,热效率得到提高,降低了能耗,提高SiC产量和质量。碳化硅制备工业试验与数值模拟和实验结果具有较好的一致性,验证了提出的温度场演变规律以及多方向能量流及物质流扩散动力学机理。总体上,本文建立了多热源多向流体系制备碳化硅材料的理论体系,建立了最佳发热源数目判定模型,获得了多热源多向流体系合成SiC新技术优化有益传热和传质的途径,为提高SiC产品的产量和质量,降低产品能耗和安全生产提供理论指导。

庄飞[3]2006年在《多热源“熔透”法合成碳化硅的实验研究》文中进行了进一步梳理目前,大规模工业生产SiC的方法有Acheson法和多热源法两种。Acheson法经过多年的应用已经很成熟,但生产的产品能耗高、产量低、质量差,生产成本居高不下。现在应用比较广泛的多热源合成SiC技术具有温度梯度小,热场均匀,SiC生成区域宽,合成的产品能耗低、产量高的特点。但是如果工艺控制不严格,产品结合部易石墨化、晶体缺陷多,影响了产品质量。多热源熔透法合成SiC经过实验室试验和工业化试验已经很成熟,在新疆得到了广泛推广。它在反应前期由多个热源发热,在反应后期由一个热源发热,降低了单耗提高了单产,合成出的产品品质高,对工业生产意义重大。 在传热学基础上,利用解析法对合成炉内反应前期热源迭加区和后期炉内传热方程进行计算,得出合成炉内不同时期的温度分布方程。利用模拟软件对多热源熔透法合成炉由多炉芯到单炉芯变化过程中炉内温度、热流强度、温度梯度变化规律进行研究。根据多热源熔透法反应前期和后期热源数目不同的特点,利用模拟软件研究了不同炉芯形状和间距对产品发育的影响。对反应结束后炉内只有一个热源和结晶筒的特点进行传热分析,利用能量守恒原理进行炉芯数目判定,结合生产实践对模型进行检验,证明其有较强的实用性。 以多热源熔透法技术进行工业合成试验,研究了不同原料、装炉设计、炉芯间距、供电工艺等对合成产品的影响。应用X衍射和扫描电镜对多热源法结合部产品和多热源熔透法产物进行测试。结果表明焙烧后的原料有利于工业生产,炉芯间距和供电工艺对多热源熔透法产品影响很大,应根据实际情况选择合适参数;多热源熔透法产品晶体缺陷少,高温型晶体含量高,结晶类型、晶体形貌趋于单一,有利于工业化生产高品质SiC产品。

杨斌[4]2005年在《多热源多向流合成电工碳化硅的中试实验研究》文中进行了进一步梳理目前,工业生产电工 SiC 的方法只有 Acheson 法。该法经过一百多年的不断完善和发展,技术已经相当成熟。但以 Acheson 法生产的电工 SiC 能耗高、产量低、质量差,生产成本居高不下。多热源合成 SiC 技术经过实验室小试、中试和工业试验,技术上逐渐成熟,并在 SiC 行业得到广泛的推广应用。它以多个炉芯代替传统的单个炉芯产生电热,向炉内提供化学反应所需的动力。多个炉芯代替单个炉芯发热能有效地分散合成炉内热量,降低温度梯度,均匀热场,使扩散动力加大、排杂能力更强、SiC 生成区间拉宽,合成的产品能耗低、产量高、质量好。多热源合成 SiC 技术在 SiC 合成方面具有很大的优势,但一直没能在电工 SiC 生产中得到应用。应用多热源合成 SiC 技术合成电工SiC,降低产品能耗、提高产量和质量、降低生产成本,对工业生产来说具有重要意义。以多热源合成 SiC 技术、利用实验室现有设备进行单热源和多热源电工 SiC 中试合成,研究了合成方法、炉芯间距、表面功率负荷和工艺方法对合成效果的影响。在传热学基础上,以数学解析法对单热源合成炉内的传热微分方程进行计算,得出温度分布方程。利用一种温度迭加的方法,对多热源炉内热源共同作用的区域的温度进行迭加计算,得出迭加后的温度分布方程。根据合成炉内物质和温度分布的特点,将炉内的温度区域划分成结晶区、反应区和预热区,并给出不同区域的温度分布方程。对供电末期炉内的传热进行分析,根据能量守恒原理,建立了多热源炉芯数目的判定模型,以工业生产实际对模型进行检验,结果表明模型具有良好的实用性和普遍性。在数值计算的基础上,应用 ANSYS 软件对合成炉内的温度场进行模拟,研究了合成炉内温度、温度梯度和热流强度的变化规律。应用 X 衍射和扫描电子显微等手段对单热源法和多热源法合成产物进行测试,结果表明多热源法合成产物无论是晶体含量、结晶类型的一致性,还是结晶形貌特征都比单热源法合成产物好。焙烧料和新料两种工艺合成效果表明焙烧料具有明显优势,生产中应尽可能应用焙烧料工艺。不同炉芯间距、表面功率负荷合成效果差异很大,合成时应根据实际情况选择合适的表面负荷和炉芯间距。

李勇刚[5]2011年在《高温电加热过程模拟与优化的研究》文中指出随着新材料工业的发展,工业电加热设备应用越来越广泛。严格控制产品质量、降低生产能耗、保障生产安全是工业电加热设备技术进步的不懈追求。本文以过程系统工程理论为指导,采用有限元方法对高温电阻炉加热过程进行了较系统的数学模拟和工艺优化研究,以期为高温电加热过程的发展有所裨益。论文评述了过程系统工程、有限元法以及艾奇逊式电阻炉的特点及发展。介绍了开源有限元模拟分析软件FEPG;讨论了高温电阻炉的进展,重点分析了碳化硅合成炉和石墨化炉在炉型改进、工艺提高和模拟优化方面的国内外研究动态。在分析电阻炉加热过程中所存在问题的基础上,提出了本文的研究方向。通过对艾奇逊式电阻炉的炉型分析,应用虚功原理,建立了高温电阻炉在二维动态非线性传热有限元模型;同时,对反应过程产生气体的情况进行了分析,建立了二维传热-渗流耦合的有限元模型;结合炉体和部件的应力和形变情况,又建立了叁维的传热-形变-应力耦合的有限元模型。因为炉料由多种颗粒组成,采用混合模型将其简化为分层拟均相模型,并采用修正的热逾渗理论模型进行描述。通过对直通电石墨化炉的有限元计算,并与现有文献比较,结果表明:本文所建立的传热有限元模型和多种颗粒组成炉料的有效导热系数的计算方法是有效的。采用建立的传热有限元模型,对一有效宽高为2.1m×1.9m、炉芯宽高为0.35m×0.6m、单位体积炉芯负荷8.5×10~5W/m~3的艾奇逊炉碳化硅生产过程进行了模拟和分析:(1)具体分析了炉内动态的温度场分布、不同时刻炉料水平线上温度梯度变化、热流密度变化情况,系统的考察了炉内产品产量和单位产品能耗随生产进行的变化趋势。结果表明产品产量随时间线性增长,单位产品能耗呈现从高到低,然后平稳,最后上升的变化趋势。考察炉芯表面温度可知其与产品能耗密切相关。能耗较低的平稳阶段对应于从炉芯表面温度上出现了2600℃温度点,到全部表面温度均超过2600℃。这意味着该阶段是炉芯热效率最高的阶段。炉芯表面完全达到碳化硅分解温度的时刻,正是能耗较低产量较高的时刻,因此也是生产停炉的最佳时刻。对温度梯度和热流密度进行分析,发现温度梯度最大的阶段出现在合成碳化硅的温度区域内,而且随着时间增长炉表面散热的热流密度也增长。(2)喷炉问题是碳化硅炉生产中迄今仍没有完全解决的问题。本文应用传热-渗流耦合的有限元模型,分别系统地考察了正常生产条件、增大炉芯功率和增加密度导致渗流系数变小叁种条件下,炉底气体压力和炉表气体流量变化。发现了喷炉的具体原因:1)炉料配置不合理,导致气体渗流系数变小。2)功率过高,导致化学反应过快造成炉产生的气体不能及时渗透出去。(3)石墨电极在碳化硅或石墨化炉生产过程中,部分在炉体外部,部分与炉内高温物料接触,并且自身也会通电发热。为考察电极在这种情况下是否发生损坏,应用传热-形变-应力耦合的有限元模型进行过程分析。具体考察了电极内部和外部的温度分布、电极的整体形变和电极的主应力分布的情况。结果显示:凸出炉体外部电极表面温度不超过90℃,不会发生氧化反应导致的损耗;电极整体温差小于20℃,不会因为热应力和体积力作用导致电极发生形变。因此电极在正常生产条件下不会发生损坏现象。为进一步加强电极保护,根据计算结果提出了电极保护涂层的厚度的工艺方案。为解决现有艾奇逊碳化硅炉生产能耗高、有喷炉安全隐患的问题。本文以系统过程工程理论为指导,应用传热-渗流耦合有限元模型,对有效宽高2.3m×2.1m、炉芯宽高0.4m×0.6m、单位体积炉芯负荷8.8×10~5W/m~3的碳化硅炉型生产过程进行模拟。作者将生产过程分为叁个阶段:1)生产前期,热能主要用于炉体预热、碳化硅合成尚未开始或反应微弱,该过程应尽快完成以减少散热损失。2)生产中期,炉料开始反应到炉芯表面局部达到2600℃,该阶段应尽快完成,但要注意避免发生喷炉。3)生产后期,从炉芯表面局部达到到全部超过2600℃的阶段,该阶段应在保证碳化硅继续生产的同时控制碳化硅的分解和炉表的散热。在对叁个阶段分析基础上,以喷炉压力为主要限制条件,建立以能耗最小化为目标函数的优化模型和简化的优化策略,获得了优化的功率曲线。计算结果表明应用优化的功率曲线可避免喷炉发生;选择不同的停炉时间,可分别获得能耗降低约8%且产量增加3%和增产约12%且能耗降低约5%的两种较优的结果。现有文献表明,石墨化炉和碳化硅炉由于炉料预热和炉表散热,单炉热效率仅为50%左右,热损失巨大。在对两炉有限元分析的基础上,提出了直通电石墨化炉联产碳化的新工艺,以上述单位体积炉芯负荷为8.5×10~5W/m~3的炉型为例。研究表明:扣除石墨生产耗能后,生产碳化硅的能耗为原碳化硅炉的50%,产量为54-68%;此外联产炉还减少了总的废气排放;为解决现有炉型保温效果不佳、通气性差容易发生喷炉、产品品质不高、能耗高和粉尘污染等问题,本文提出了一种增强保温的并联式、全透气的生产碳化硅的新炉型。对该炉型不仅增强了保温效果,而且还彻底解决了喷炉问题,使生产中产生的气体不仅及时的排放出去而且还为炉体的保温做了贡献,新炉型还可配合气体收集装置将气体汇总处理减少了环境污染,该炉型可以由现有炉型经简单改造而成,改造后能耗降低达15-17%,节能效果显着。

参考文献:

[1]. 多热源合成SiC传热传质规律的数值模拟及实验研究[D]. 陈杰. 西安科技大学. 2004

[2]. 多热源多向流体系碳化硅材料制备理论及应用[D]. 陈杰. 西安科技大学. 2011

[3]. 多热源“熔透”法合成碳化硅的实验研究[D]. 庄飞. 西安科技大学. 2006

[4]. 多热源多向流合成电工碳化硅的中试实验研究[D]. 杨斌. 西安科技大学. 2005

[5]. 高温电加热过程模拟与优化的研究[D]. 李勇刚. 中国海洋大学. 2011

标签:;  ;  ;  ;  

多热源合成SiC传热传质规律的数值模拟及实验研究
下载Doc文档

猜你喜欢