关于动量概念教学的思考_momentum论文

关于动量概念教学的思考_momentum论文

动量概念教学的思考,本文主要内容关键词为:动量论文,概念论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

动量是物理学中一个重要概念,教学中如何引入动量概念并对动量概念的教学是需要研究的一个问题。很多教师及一些优秀教案,在引入动量概念时,都动了很多脑筋,大多从作用效果入手,下面列举有代表性三例:

1.飞来的足球会去用头顶,飞来的铅球会去用头顶吗?而体育老师要你把学生扔出的铅球拣回来,你会吗?

2.铁榔头打粉笔头,粉笔头易碎,做一个泡沫榔头打粉笔头,只有当泡沫榔头的速度很大时,粉笔头才可能碎。

3.玩具手枪子弹发给学生,学生会仔细观察。然后老师举起上了膛的玩具手枪对准学生装着要开枪,学生用手捂脸,感到怕等等。

以上三例具有普遍性,教师设法通过学生生活中的经验和生动的实验得出:“力的作用效果”与质量有关,与速度有关,质量和速度乘积越大,作用效果越明显。揭示动量的概念正是描述“力的作用效果”的物理量,达到学生方便、快速理解动量概念的目的。

本人认为以上在引入“动量”概念时,有几点值得商议:

1.对作用效果有些夸大,扭曲了动量本身的含义

从历史的发展来看,动量(Momentum)是描述物体“运动量”的一个物理量,动量的概念以一个描述“物体的运动量”的概念被提出。这在牛顿所著的《自然哲学的数学原理》一书中也是这样描述的:

定义:运动的量是运动的度量,可由速度和物质的量共同求出。整体的运动是所有部分运动的总和。因此,速度相等而物质量加倍的物体,其运动量加倍;若其速度也加倍。则运动量加到四倍。[1]

推论:由指向同一方向的运动的和,以及由相反方向的运动的差,所得的运动的量。在物体间相互作用中保持不变。[2]

上面例举的实验夸大了作用效果,动量概念走味,歪曲了,实际上动量与作用效果并不相同。例如:一粒橡皮子弹和一粒铝制子弹具有相同的尺寸、速度和质量。它们都射向一段木头,问哪一粒子弹把木头打翻的可能性大?哪粒子弹最有可能损坏这段木头?显然,上面讲的是两种不同的作用效果,其答案也不同,前者是椽皮子弹,后者是铝制子弹,但他们的动量却是相同的。

2.逻辑推理不够严谨

实验证明质量越大、速度越大,产生的作用效果越大,并不能很好说明动量的定义一定要用质量与速度乘积表示。学生肯定会想为什么不用质量与速度的平方乘积表示或用质量的平方与速度乘积等等表示,对动量的定义提出质疑。

3.关于物理实验设计的原则

我认为应体现简单性、环保性、人文性等原则。可以说明“动量”概念的实验很多,用铁榔头打粉笔头,不符合环保性原则。举起上了膛的玩具手枪对准学生装着要开枪更是教学中应避免的恐怖行为。

4.动量概念的矢量性

通过上述的实验不能体现动量概念的矢量性,而动量概念的矢量性恰恰是动量概念教学的难点之一。

下文介绍一例国外“动量”概念的教学。下面节选美国某一物理讲义对动量概念教学的实例,以飨读者:

Momentum:(动量)

At this point,we introduce some further concepts that will prove useful in describing motion.The first of these,momentum,was actually introduced by the French scientist and philosopher Descartes before Newton,Descartes’idea is best understood by considering a simple example:think first about someone(weighing say 45kg)standing motionless on high quality(frictionless)roller skates on a level smooth floor,A 5kg medicine ball is thrown directly at her by someone standing in front of her,and only a short distance away,so that we can take the ball’s flight to be close to horizontal.She catches and holds it,and because of its impact begins to roll backwards.Notice we’ ve chosen her weight so that,conveniently,she plus the ball weigh just ten times what the ball weighs by itself.What is found on doing this experiment carefully is that after the catch,she plus the ball roll backwards at just one—tenth the Speed the ball was moving just before she caught it,so if the ball was thrown at 5 meters per second,she will roll backwards at one—half meter per second after the catch.It is tempting to conclude that the“total amount of motion”is the same before and after her catching the ball,since we end up with ten times the mass moving at one—tenth the speed.

(译文:在这一课中,我们要进一步介绍几个描述运动的概念,首先是由牛顿前法国科学家、哲学家笛卡尔引入的动量,笛卡尔关于动量的概念可由下面实例做简明阐述:设想一人(m=45kg)静止站在光滑水平面的滑板车上,站在对面很近的另一人将一质量为5kg的实心球直接投向她,这样我们可以认为球是水平飞来的,由于球的作用力,她接到球后,向后滑动,注意这里我们为了方便选择人的质量与球的质量之和刚好为球质量的10倍,实验表明,她和球一起以接住前球速度的1/10向后运动,假设球的速度为5m/s,她接住球后将以0.5m/s的速度后退,通过这个实验可得她接到球前后“运动量的总和”是相同的结论。)

Considerations and experiments like this led Descartes to invent the concept of“momentum”,meaning“amount of motion”,and to state that for a moving body the momentum was just the product of the mass of the body and its speed.Momentum is traditionally labeled by the letter p,so his definition was:momentum=p=mv

(译文:按上面的思考和实验,使笛卡尔提出了“动量”的概念,即“运动的量”。一个运动的物体动量大小由质量和速度引起,用字母p表示,p=mv。)

It is then obvious that in the above scenario of the woman catching the medicine ball,total“momentum”is the same before and after the catch.Initially,only the ball had momentum,an amount 5×5=25 in suitable units.After the catch,there is a total mass of 50kg moving at a speed of 0.5 meters per second,so the final momentum is 0.5×50=25,the total final amount is equal to the total initial amount.We have just invented these figures,of course,but they reflect what is observed experimentally.

(译文:上面的情景明显可得,这个女人接住实心球前后总“动量”是相同的,最初只有球有动量,总量是5×5=25个单位,接住实心球后,总质量为50kg,速度为0.5m/s,这样最后的动量为0.5×50=25个单位,末状态的总动量与初状态的总动量相等,我们只是设想了上面的一些数据,当然,它反映了实验的基本规律。)

There is however a problem here——obviously one can imagine collisions in which the“total amount of motion”,as defined above,is definitely not the same before and after.What about two people on roller skates,of equal weight,coming directly towards each other at equal but opposite velocities——and when they meet they put their hands together and come to a complete halt?Clearly in this situation there was plenty of motion before the collision and none afterwards,so the“total amount of motion”definitely doesn’t stay the same!In physics language,it is“not conserved”.Descartes was hung up on this problem a long time,but was rescued by a Dutchman,Christian Huygens,who pointed out that the problem could be solved in a consistent fashion if one did not insist that the“quantity of motion”be positive.

(译文:然而按上面碰撞中“运动总量”的定义明显有一个问题,怎么看待在光滑的水平面上有两个质量相同的人相向以相同的速率运动,相遇时他们的双手接触,他们都将完全停止。很明显,对于上述过程在碰撞前有一定的动量,而碰撞后动量为零,这样,碰撞前、后动量不相等,用物理语言讲“不守恒”。笛卡尔被这一问题难住了很长一段时间,直到被荷兰物理学家惠更斯解决,惠更斯指出,如果我们不坚持认为“运动总量”是正的,那么问题就能得到很好的解决。)

In other words,if something moving to the right was taken to have positive momentum,then one should consider something moving to the left to have negative momentum.With this convention,two people of equal mass coming together from opposite directions at the same speed would have total momentum zero,so if they came to a complete halt after meeting,as described above,the total momentum before the collision would be the same as the total after——that is,zero——and momentum would be conserved.of course,in the discussion above we are restricting ourselves to motions along a single line.It should be apparent that to get a definition of momentum that is conserved in collisions what Huygens really did was to tell Descartes he should replace speed by velocity in his definition of momentum。Momentum=Mass×Velocity

(译文:换一句话说,如果我们把向右运动的物体“动量”当做正,那么我们应该认为向左运动的物体“动量”为负。有了这样的约定,两个相同质量的人以相同的速率相向运动,它们的总动量为零,如上描述,当它们相遇时它们完全停止,这样在碰撞前、后动量相等,都有为零,动量守恒。当然,在上面讨论中,我们只限制在一条直线上运动,很明显,惠更斯告诉笛卡尔,要给出一个在碰撞中守恒的“动量”的确切定义,在原来的“动量”定义式中应该用速度代替速率。动量=质量×速度。)

“动量”是一个描述物体在碰撞中“守恒”的物体的运动量被提出的,上面的描述和实验很好地体现了人们对物理概念历史的认识过程,给出了“动量”的确切定义,动量概念的矢量性也得到了突破性的体现。如果我们在教学中适当借用,再辅助恰当的实验,相信一定会让学生树立一个正确的动量概念,在教学中取得较好的效果。

标签:;  

关于动量概念教学的思考_momentum论文
下载Doc文档

猜你喜欢