探究式教学在“四学四步”教学模式中的应用与思考,本文主要内容关键词为:教学模式论文,式教学论文,四学四步论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
一、问题的提出 目前,我国基础教育课程改革已经全面铺开.更新教师的教学观念,转变教师的教学行为,改变学生的学习方式,减轻学生的学习负担,培养学生的创新精神和实践能力,提高教学质量和效益,是课程改革的重要目标.山西省长治县第一中学紧跟全国及山西省的课程改革步伐积极探索适合学校的课改道路,不断取得新成果.2014年,学校为了进一步实现课程改革目标,促进教师在教学中更好的综合应用中学新倡导的“启发式、自主式、合作式与探究式”等教学方法,在原有改革的基础上,构建了适合学校实际情况的“四学四步”教学模式在全校推广,把学校的课堂教学改革工作向前大大推进了一步. 改变课程实施中过于强调学生接受学习的现状,倡导教师积极采用引导学生主动参与、乐于探究的教学方法,这是新课程改革的一项重要理念[1][2].如何在学校构建的新模式中体现这一重要理念是笔者一直努力实践和思考的问题. 二、“四学四步”教学模式简要介绍 “四学”指的是“自学”“互学”“助学”“悟学”.与其相对应的“四步”分为:(1)问题引导,独立自学:教师下发导学案,让学生明确学习目标、自学范围、自学内容、自学方式、自学时间以及自学要求,在问题引导下,学生独立自学教材,完成自学测评.(2)学生合作,交流互学:在自学、自测的基础上,学生与学生合作、互动学习,掌握基础知识、基本技能及核心概念.(3)师生互动,点拨助学:或教师帮助分析原因、或教师提供技术手段、或优等生讲解、或教师点拨精讲,帮助学生解决重点、突破难点.(4)归纳总结,反思悟学:学生在解决了重点、难点之后,通过对本节内容进行思路梳理、方法总结,得到体会和感悟.以上四个步骤层层递进,前后呼应,形成一个整体,为培养学生的自主学习能力、合作学习能力及探究学习能力提供了广阔空间. 三、“四学四步”教学模式中探究式教学的应用 1.自学环节:激发学生独立探究的兴趣 在自学环节努力创设启发、引导探究的问题情境,激发学生独立探究的兴趣,培养学生思维的独创性.著名教育家夸美纽斯说过,兴趣是创造欢乐和文明教育的主要途径之一.教师应不失时机地为学生营造“乐学、趣学”的思维环境.创设一个能启发、引导学生探究的问题环境,不仅有利于调动学生的学习积极性,有效地激发学生的探究兴趣,而且使学生容易获得探究的成果,享受成功的喜悦,为学生进一步高难度的探究奠定基础.波利亚曾说过,教学必须为发展做准备,或至少进行一点发明的尝试,无论如何,教师不能压制学生发明的萌芽.作为教师,还要尽可能为学生提供独立思考、独立探究的空间和时间,来培养他们思维的独立性和创造性,这样更有利于学生创造能力的发展. 案例1:人教版《普通高中课程标准实验教科书·数学2(必修A版)》[3]第二章的“直线与平面垂直的判定”一节教学的自学环节,在导学案指导下,学生通过阅读教材相关文本材料,形成直线与平面垂直的概念后,为了启发引导学生独立探究“直线与平面垂直的判定定理”,笔者运用“先行组织者”[4]教学策略在导学案中设计了如下问题情境. 根据定义判断直线与平面垂直,需要判断直线与平面内的任意一条直线都垂直,这从理论上能说通,但在实际操作时难以实施.有没有一种方便可行的办法来判断直线与平面垂直呢?即能否像判断直线与平面平行那样,通过判断与平面内少数几条直线的垂直来判断直线与平面的垂直? 先借助手头的纸笔进行操作,探究以下三个有关联的问题. (1)如果一条直线和一个平面内的一条直线垂直,那么这条直线与这个平面是否垂直? (2)如果一条直线和一个平面内的两条直线垂直,那么这条直线与这个平面是否垂直? (3)如果一条直线和一个平面内的无数条直线垂直,那么这条直线与这个平面是否垂直? 再按照教材“探究”栏目的要求进行折纸试验,同时回答教材“思考”栏目的问题. 由于探究的目标指向明确,探究的问题被分解,探究的手段和方法已告知,在这一过程中,学生的探究热情非常高涨,一会儿纸笔比划,一会儿思考,一会儿折纸试验,几乎没有不动的学生. 笔者给足学生时间后,多数学生不仅能正确回答这三个有关联的问题,而且很自然地探究出线面垂直的判定定理,顺利体会出“线就两条,重在相交”的道理. 2.互学环节:点燃学生合作探究的热情 在互学环节巧妙营建自然、和谐的思维情境,激发学生合作探究的热情,培养学生合作共赢的意识. 学生在自学环节难免会产生一些疑惑或者生成一些质疑,这些正是非常有用的教学资源.教师要善于充分应用,借此营造自然、和谐的思维情境,挑起学生合作探究的热情,从而培养学生合作共赢的意识. 案例2:学生在自学环节学习“二面角的平面角”概念时,有一些学生突然对二面角的平面角定义提出质疑:当OA和OB不与棱垂直,但与棱所成的角相等时,由等角定理知,∠AOB也是存在且唯一的,为什么不用这样的角来定义二面角的平面角呢?此时,笔者就抓住时机,先让学生自己去思考、探索、发现这两种方法的异同,然后再引导学生交流讨论.课堂上各小组学生积极行动起来,学生拿起教材、笔本等工具,演示他们的想法.通过讨论达成共识:后一种方法射线的取法不同,能使得一个二面角有很多的角度,也即这个角的大小不固定,在实际问题中不方便测量,所以第一种方法胜出. 课堂上不经意出现的意外,是学生灵感的萌发、学习的顿悟,教师应遵循学生思维的起点与情感的波澜,随时调整教学,动态地生成学习内容.案例中,学生的大胆质疑,是教师没有预料到的,但教师没有机械地执行原有的教学计划,而是不失时机地抓住课堂上出现的意外,把学生生成的问题又抛给学生,引导学生动手探究,进而展开讨论,让学生全身心地投入到探索活动中,通过课题讨论解决了疑惑,使学生对“二面角的平面角”概念的认识得到升华,探究的欲望得到满足,个性得到充分发展,享受到合作探究、互学共赢的快乐. 3.助学环节:引导学生掌握探究的方法 在助学环节精心设计灵活、开放的教学过程,引导学生掌握多角度、深层次探究问题的方法,提高学生的探究创新能力. 该环节是探究式教学得以充分应用和体现的关键环节. (1)通过开放问题引领学生多角度探究[5]. 通过开放问题引领学生多角度探究问题,既能拓展学生的思维空间,又能使学生学会多角度探究问题的方法. 在对这些问题的认识和理解上,不追求大统一,不搞一言堂,不设计标准答案,不轻率地否定学生的探究,积极鼓励学生向教材挑战,鼓励学生另辟蹊径,多视角、多层面地探索和研究问题.也要鼓励学生走出教材,走出课堂,在广阔的大千世界中学习知识.总之,应该让学生在每一节课上,享受到热烈、沸腾、多姿多彩的精神生活. 案例3:在高一平面向量教学后,笔者安排了一节总结复习课.在助学环节,好几个学习小组提出了如下问题:若非零向量a,b满足|a-b|=|b|,则( ). (A)|2b|>|a-2b| (B)|2b|<|a-2b| (C)|2a|>|2a-b| (D)|2a|<|2a-b| 这道题主要考查向量的减法运算,向量的几何意义,以及向量的模等基础知识.虽然此题难度中等,但情境新颖,相等与不等关系交织在一起,对于刚学完向量知识的高一学生,做起来的确有一定困难,笔者也正好想借此题不同解法的探究来提高学生解决这类问题的能力. 教学过程如下. 师:还是先让小组同学说说你们的想法吧!探究式教学在“四步四学”教学模式中的应用与思考_向量的模论文
探究式教学在“四步四学”教学模式中的应用与思考_向量的模论文
下载Doc文档