北京全路通信信号研究设计院集团有限公司
摘要:近年来,我国城市轨道交通获得长足发展,线路长度、机车客运数量指标大幅增长,我国已成为世界最大的城市轨道交通建设市场,使得地铁信号系统的发展在现阶段也是十分可观的。传统的封闭式信号模式在当前已经逐渐的发展成为了移动闭塞模式,但由于我国的信号系统要求比较高,因此在自动控制功能上也提出了更高的要求。基于此本文主要对地铁信号系统自动控制功能进行了分析,希望为我国的地铁信号技术发展和地铁安全提供有益的建议。
关键词:地铁信号系统;自动控制;功能
1、地铁信号系统自动控制功能
为了能促使自动控制技术在地铁信号系统中发挥出最大的作用,要求地铁信号系统中一定要兼顾以下几点功能:
1.1、列车自动驾驶系统
这项系统的应用主要是为了实现列车的动态调整,同时能实现列车的定点停车,在每站之间能进行自动运行。
1.2、列车自动监督系统
该系统的功能应用主要为能自动生成列车时刻表,并对全线运行的列车进行动态监督,保证列车能在规定的时间内达到每站,实现正点运行。
1.3、列车自动防护系统
该系统主要实现的是列车的定位和追踪,并且促使列车停靠位置能得到保障。以上的所有列车自动驾驶系统、监督系统以及防护系统构成了地铁信号的自动控制系统。当前阶段由于科学技术和计算机网络技术的快速发展已经在地铁系统中引入了全面的计算机联锁装置,给系统的整体性和有效性提供了极大的便利和保障,更促使信号的抗干扰能力得到了提升。
2、地铁信号系统自动控制基本功能
2.1、列车自动防护子系统(ATP)的功能
ATP子系统控制列车在安全条件下行驶,主要包括以下基本功能:(1)列车定位功能。通过列车提供的速度、距离以及线路等方面信息,确定列车安全位置及非安全位置,ATP系统利用安全位置对列车进行安全防护。(2)列车追踪功能。该功能提供数据以保持安全的列车间隔,ATP子系统根据列车位置报告、道岔位置构建追踪占用地图,通过非安全位置和位置及其不确定性计算安全的列车两端位置。(3)速度监督校正功能。车载控制器对速度传感器和加速计输入的速度数据一致性进行监控,记录检测到的速度或速度传感器非常规变化信息。(4)停车位置保证功能。停车保证通过比较移动授权和当前列车位置和速度进行判断,系统接收到进路取消请求后,将延迟一段时间用以保证列车制动停车需要。(5)溜车防护功能。车在站台区域停车时,车载控制器须确保列车处于静止状态。如果系统检测到列车在没有命令的情况下有了物理位置的移动,车载控制器将实施紧急制动。
期刊文章分类查询,尽在期刊图书馆
2.2、列车自动驾驶子系统(ATO)的功能
ATO子系统控制列车自动运行。它在ATP系统的保护下,根据ATS发送的指令实现列车运行的自动驾驶、自动调整速度和控制车门,主要包括以下基本功能:(1)自动运行功能。ATO子系统控制列车按运行图规定的区间走行时分行车,自动完成列车启动、加速、巡航、惰行、减速和停车的合理控制。(2)列车精确停车控制功能。在ATP防护下,通过车地通信设备和轨旁设备实现自动列车精确停车控制。(3)在线列车监控功能。ATO车载控制器将列车运行的有关信息传递至ATS子系统,实现ATS子系统对在线列车实时监控。
2.3、列车自动监控子系统(ATS)的功能
在地铁信号系统自动控制系统中的自动监控子系统主要负责的是对列车的运行实际情况进行自动性的监控和调整,主要包含了以下几点功能:(1)对列车的识别功能,当列车驶入到一定的范围内会对列车的车次、运行方向等进行进一步的明确,从而为专业人员提供一定的资料保障。(2)列车的追踪功能。在列车的自动监控子系统当中可以根据车的位置和操作人员所发出的请求来完成列车的创建和删除等操作。(3)自动排路功能。在该子系统当中能为车辆提供运行的线路,根据目的地来进行车辆的定点停靠,为列车的正常运行提供便利性。(4)列车自动调整功能。所谓自动调整就是指在列车的正常运行过程中时刻表能自动的根据列车运行进行运动,将列车与时刻表之间的差值控制在最小范围内。
3、地铁信号系统自动控制的体现
3.1、ATP列车人工驾驶模式
在列车司机显示器显示的ATP速度限制下,列车司机控制列车速度,ATP子系统实现列车自动防护的全部功能,站台停车以及车门及安全门的开关均由车载控制器允许的门操作模式实施控制。
3.2、非限制人工列车驾驶模式
非限制人工列车驾驶模式,这当中也充分的体现了地铁信号的自动控制能力。非限制人工列车的驾驶中需要切断车载控制器输出,司机可以根据地面信号和调度命令来对驾驶的列车进行控制。列车在运行的过程中列车安全以及人员调度等都是由人工进行控制的,当从其他的模式切换到这种模式的时候需要列车停车进行调整,否则会导致列车电路紧急制动。
4、地铁信号系统自动控制功能发展趋势
第一:随着通信技术的发展和计算机网络技术的进步,单一线路的ATS控制系统将向集成化程度更高的城市综合轨道交通控制系统发展,实现轨道交通网络综合监控;第二:目前国内普遍采用的ATO自动驾驶模式在列车出站时仍需要司机发出发车命令,在CBTC系统运营日渐趋于稳定后,通过系统升级等方式实现全程无人ATO驾驶功能,信号系统自动控制列车行驶,降低运营单位生产压力的同时提高社会经济效益;第三:当前各城市地铁线路间均有联络线预留,为线路间的互联互通提供了基本的物理条件,在车型、轨道线路等条件允许下,各系统承包商开放系统接口的情况下,通过升级车载控制器,CBTC列车将实现各线路间的互联互通,为更灵活的运营调度提供方便。
总之,随着近年来科学技术和信息技术的快速发展,地铁信号系统的自动控制系统也将得到更好的发展和提升。现阶段在地铁信号系统的自动控制功能上仍然存在着一定的欠缺,对此还需要进一步的进行深入研究,争取为我国的轨道交通事业发展做出更大的贡献。。
参考文献:
[1] 梁波.地铁信号系统自动控制功能分析[J].信息通信,2014,(06):172-173.
[2] 谢晓宏.地铁信号系统中的智能信号功能分析[J].通讯世界,2016,(14):115-116.
论文作者:刘晓
论文发表刊物:《基层建设》2017年第31期
论文发表时间:2018/1/24
标签:列车论文; 功能论文; 系统论文; 信号论文; 地铁论文; 子系统论文; 自动控制论文; 《基层建设》2017年第31期论文;