摘要:随着社会的发展,我国的科学技术的发展也有了很大的进步。光伏发电站是利用太阳能进行发电,是一种新能源,也是当前一种重要的发电手段,将光伏发电并网,将其并入大电网能有效的提高光伏发电的规模,更好的增强太阳能的实用范围,但光伏发电在并网的具体应用中,仍存在许多问题,妥善解决光伏发电系统接入大电网后的这些安全、高效运行的问题是关键,本文将从光伏发电系统及其并网的技术特点入手进行分析,对目前光伏发电并网的一些问题进行总结研究,并针对这些问题提出相应的解决措施。
关键词:光伏发电;并网大电网;面临的问题;对策
引言
针对光伏发电并网大电网问题,做了简单论述。从当前光伏发电发展实际来说,具有节能优势,正在被积极推广应用。光伏发电的应用,主要采取的是并网形式。不过并网大电网还面临诸多问题,阻碍其发展。基于此,深度分析此课题,提出光伏发电并网大电网有效策略,有重要意义。
1光伏发电并网技术
1.1光伏发电
通过合理的方式,对太阳能进行收集,并将其转化为电能,这种方式被称之为光伏发电。在光伏发电系统当中,起到关键作用的是设备内部的光伏元件。经过太阳的照射之后,会在元件的内部产生相应的电荷,并且电荷呈现非均匀性的分布,从而形成电势能,通过这种方式能够将太阳能转化为电能。在当今时代,光伏发电是对太阳能进行有效利用的关键技术之一,有利于人们对清洁可再生能源的充分利用。
1.2光伏发电并网技术
通常情况下,要想全面实现光伏发电并网,需要建立在一定的基础之上。首要的前提为逆变器输出的电流与电网当中的电流频率和电压保持一致。在实际配电的过程当中,光伏发电并网最为常见的方式为分散式和集中式。集中式并网通常是直接将电能输送到大电网当中,由大电网对其进行适当的调节与合理的分配,采用恰当的方式将电能输送给用户,这种方式最为主要的特征是能够与大电网之间实现电能的单项交换。就分散式并网而言,主要是由光伏发电系统将收集和产生的电能向负载直接输送,这种情况只有当电力不足或者是过多的时候,才能够通过大电网来进行调节干预。所以,这种分散式并网的主要特征是能够与大电网之间实现电能的双向交换。
2光伏发电并网大电网面临的问题
2.1雷击影响
从发电方式来说,光伏发电站是利用太阳能进行发电,装置多设置在室外,极易受到雷击威胁,尤其是雷雨天气。雷云表面负电荷,会受电缆和支架感应影响,产生高压电,使发电系统被雷击后,会产生极大破坏。光伏发电并网大电网后,光伏电站运行所产生的电力,直接供给居民及企业,当光伏电站受雷击后,给大电网造成一定影响,进而影响居民及企业用电安全。
2.2运行安全性问题
从光伏发电实际来说,其为太阳能发电的一种,由于太阳能发电缺少稳定性,很容易受太阳光影响,具有较强不确定性,使得并网后,大电网运行预测难度增加,使配电网无法实现断面交换功率控制。并网后大电网中设置的电源越来越多,电源分布点逐渐增加,使电源控制及协调的难度性增加,传统电压和无功补偿方法的应用,已无法获得有效控制结果,影响大电网运行的安全性和灵活性。
2.3配电系统规划问题
当光伏发电系统并网后,配电系统功能会出现一定变化,影响电能收集和运输及分配,若处理不到位,极易影响电网运行效率和质量,使电压产生波动和波污染等问题,在并网时,需开展配电系统合理规划,继续沿用传统规划思维已不再适用。
期刊文章分类查询,尽在期刊图书馆
3光伏发电并网大电网的有效对策
3.1加强光伏发电并网大电网的相关研究
当光伏发电系统接入大电网之时,其与大电网之间产生了相互的影响,从而对电网的运行产生了非常不利的影响,在很大程度上降低了整个供电网络的运行效能,同时也很容易造成一定的安全问题。因此分析若要对这一问题进行有效的控制,需要做好完善的预测和判断工作,对光伏发电系统和配电系统当中所存在的安全问题进行有效的分析,同时也要提高对光伏发电并网大电网的研究力度,分析本质,从而能够实现光伏发电系统并入大电网之时对电网的影响情况有一个全面的了解,并且在此基础上可以为光伏发电系统并入电网和配电系统工作提供坚实有力的理论指导。
3.2减少光伏微网的接入点
从当前光伏微网的发电及传输现状进行分析,其受限于气候环境,电池质量,转换率,配网搭建等方面的因素,在接入大电网运行中还存在较多的问题。具体分析光伏发电微网电能在接入并网大电网进行运行时,理论分析提升了资源的应用效率。但因电位差,电压波动,传输稳定性等方面的因素影响,实际发展中为有效地提升光伏发电并网大电网的运行质量,并且合理地发挥光伏发电的电能应用效果,减少光伏发电微网与大电网之间的接入点,为有效的改善对策之一。具体落实中首先针对光伏发电微网的发电电能,进行区域段的预先处理或储备,之后通过统一的线路支路接入大电网,以此减少光伏发电微网与大电网之间的接入支路。最终达到减少因支路接入过多引起的电位差过多,电压波动过多,传输波动等现象,造成大电网运行不良现象,保障光伏发电接入大电网并网运行的安全性和稳定性。
3.3落实无功补偿
光伏发电运行中并网大电网的运行,落实无功补偿对其供电质量的提升,以及供电稳定性的保障奠定良好的基础。其中具体落实无功补偿的依据为,光伏发电微网运行中与大电网运行中,两电网之间的运行功率存在一定的差异性,该类差异性的表现直接呈现为高线损,高故障率,供电不稳定等现象。因此针对低等级的光伏发电微网实施无功补偿,则可使其在接入大电网并网运行时,整体的微网电能传输供应较为稳定,波动现象较少,最终有效地提升了电网的运行质量,对于用电户的稳定用电保障,以及各类供电设备的稳定运行,奠定了良好的基础。综合分析有效地提升了电力企业的实际收益,并且对于光伏发电并网接入大电网的稳定运行及可持续发展,发挥了积极的作用。
3.4强化反复性发电系统的电网运行
为深度分析电力系统,必须开展潮流计算,并且实施动态仿真,使用监理合理化模型,最大程度上保障结果。在进行光伏电池分布式系统的研究时,重点研究电源特征,构建动态化模型,掌握不同运行状态下系统的不确定性。目前,光伏发电技术已经被普遍应用。随着应用规模的不断扩大,极有可能会造成大系统电压以及频率等出现问题,比如稳定性不足,因此要深度研究光伏发电系统、系统运行方式、并网大电网形式等。提升光伏发电功能的预测精准度,使其及时受到不确定性因素的影响,还能够保障发电的可行性,顺利推进各项计划。提升技术水平,是推动光伏发电并网应用的重要手段和途径,必须要做好全面的分析和研究,最大程度上提高电网运行的水平。
3.5加强电能以及电能质量的控制
从光伏发电系统运行实际来说,发电具有不确定性,使实际功率输出时,极易产生波动,影响用户用电。以逆变器为例,其实际应用时,极易产生谐波,使配电系统谐波持续增加。因此,必须不断提升对配电系统电能的把控力度。除此,还需做好电能质量把控,进而提升光伏发电并网运行质量。不确定性是光伏发电的主要特点,且功率输出极易产生波动,给接入电网系统中的用电用户,造成很大程度上的影响,引发电能质量问题。逆变器谐波的出现,使配电系统谐波系统运行水平不断提高。光伏发电通过单相电源并网,使配电系统受到影响,三相不平衡问题更明显。必须加大关于配电系统电能质量相关问题的研究,提升电能质量监控水平。
结语
总之,传统的发电形式已经无法适应现代社会的发展,虽然目前来看光伏并大电网虽还有很多问题存在,但并网是电力行业发展的趋势,也是目前应用非常多的存在,而这些问题,只要我们深入研究,就能找到解决措施。只有这样,才能促进光伏发电技术的不断向前发展。
参考文献:
[1]陶园.光伏发电并网大电网面临的问题与对策[J].建材与装饰,2017(49):206.
[2]易振坤.浅析光伏发电并网大电网面临的问题与对策[J].低碳世界,2017(27):91-92.
论文作者:冯雷
论文发表刊物:《电力设备》2018年第28期
论文发表时间:2019/3/5
标签:电网论文; 光伏论文; 电能论文; 网大论文; 系统论文; 质量论文; 方式论文; 《电力设备》2018年第28期论文;