(中国能源建设集团新疆电力设计院有限公司 新疆 乌鲁木齐 830000)
摘要:高压架空输电线路因雷击跳闸一直是困扰安全供电的一个难题,雷害事故几乎占线路全部跳闸故障的1/3或更多。因此,寻求更有效的线路防雷保护措施,一直是世界各国电力工作者关注的课题。本文从分析高压架空输电线路雷击跳闸故障的经验和有关研究入手,重点对综合防雷措施做了一些探讨。
关键词:高压;架空;输电线路;防雷措施
近年来,我国社会主义建设各方面都取得了长足的发展。输电线路的在我国建设中的作用是不容忽视,而防雷器在输电线路中的应用可以良好的解决这一问题,因此,要重视防雷器在高压架空线路中应用,保障我国高压架空线路成为社会主义现代化的助推器。
一、架空输电线路雷害形成的四个阶段
架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:①防直击,就是使输电线路不受直击雷。②防闪络,就是使输电线路受雷后绝缘不发生闪络。③防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。④防停电,就是使输电线路建立工频电弧后不中断电力供应。
二、雷击跳闸率
对架空输电线路而言,防雷保护工作的目的是尽量避免导线不受雷击或雷击之后尽量使绝缘子不闪络,从而避免因产生工频电弧造成跳闸。也就是说线路遭受雷击而不跳闸,不影响系统的正常供电就是架空输电线路防雷的根本目的。而架空线路地处旷野,绵延成百上千公里,而在雷电多发区经常遭受雷击的线路,即使加装了各种防雷措施也做不到完全不跳闸,目前衡量某条线路雷击跳闸情况采用雷击跳闸率(定义:架空输电线路在规定长度和规定雷暴日下因雷击引起的事故跳闸次数),防雷设计就是要求出某条线路的雷击跳闸率,尽量降低雷击跳闸率。
三、降低雷击跳闸率的措施
3.1架设地线
架设地线是高压架空输电线路最常用的,也是最基本的措施之一。
期刊文章分类查询,尽在期刊图书馆架设地线能最大限度的防止雷击导线,有效分流雷击塔顶时的雷电流使塔顶电位降低,能有效降低塔头绝缘子串和空气间隙上的电压。雷击跳闸率与地线的架设根数、架设距离及地线与导线的保护角关系较大。
关于地线的架设根数,根据相关规范和国内外的运行经验,各级电压的输电线路应采用的保护方式:其中500KV输电线路宜沿全线架设地线,在年平均雷暴日数不超过15或运行经验证明雷电活动轻微的地区,可不架设地线。无地线的输电线路,宜在变电所或发电厂的进线段架设1-2km地线。220-500kV输电线路应沿全线架设地线,年平均雷暴日数不超过15的地区或运行经验证明雷电活动轻微的地区,可架设单地线,山区宜架设双地线。500-750kV输电线路应沿全线架设双地线。关于架设距离:规定杆塔上两根地线之间的距离,不应超过地线与导线间垂直距离的5倍。根据运行经验对于多雷区和山区的送电线路,减少地线与导线的保护角,可以非常有效的降低雷击跳闸率。而运行经验表明,高杆塔输电线路雷击跳闸主要是绕击雷引起的,而小的保护角对绕击雷有很好的防范作用。
3.2提高线路的绝缘配置
根据输电线路外绝缘设计原则,绝缘子串选择应同时满足工作电压,内部过电压和雷电过电压三方面要求,一般不按雷电过电压的要求来选择绝缘子串的绝缘强度,而是根据污秽条件下的工作性能选定绝缘子片数,再校核操作过电压及雷电过电压。除个别高塔、大跨越外一般不将雷电过电压作为选择绝缘子片数的决定条件,仅作为线路耐雷水平校验。
但是在多雷区或对于已经建成的线路,可以通过改善绝缘来提高线路的耐雷水平。是增加绝缘子的片数(增加绝缘子串长度)进而提高放电电压。实验表明,增加线路的绝缘子串长度可以提高放电电压,可以提高雷电击中杆塔顶部的耐雷水平以及减小绕击雷是引起雷击跳闸。
3.3安装可控放电避雷针
可控放电避雷针相对于传统的避雷针来讲,该种避雷针不等雷电场强增加到一定的程度就能够提前放电,保护半径更大,降低了每次接闪时的雷电流脉冲强度,减少了雷电感应引起的二次效应,更为安全。雷云对地面物体放电有上行雷闪和下行雷闪2种方式。一般来说,下行雷闪时,先导自上而下发展,主放电过程发生在地面(或地面物体)附近,所以电荷供应充分,放电过程来得迅速,造成雷电流幅值大,陡度高;上行雷闪,一般没有自上而下的主放电,它的放电电流由不断向上发展的先导过程产生,即使有主放电因雷云向主人电通道供应电荷困难,所以放电电流幅值小,且陡度低。上行雷闪不仅雷击电流幅值小陡度低而且不绕击,这是因为上行雷闪先导是自下而上发展,该先导或者直接进入雷云电荷中心,或者拦截自雷云向下发展的先导,这样中和雷云电荷的反应在上空进行,自雷云向下的先导就不会延伸到被保护对象上。上行雷闪还有另外一个特点是上行先导对地面物体还具有屏蔽作用,可减轻放电时在地面物体上的感应过电压。可控放电避雷针正是利用了_上行雷闪的这些特点,使其能可靠地引发上行雷闪放电,从而达到中和雷云电荷,保护各类被保护对象的目的。
根据传统的输电线路防雷理论,可以在输电线路杆塔的顶部安装可控放电避雷针。重力会使线路产生弧垂,这样线路中间的保护角就会比靠近杆塔处的保护角要小。又由于杆塔的垂直位置相对较高,在靠近杆塔的地方更容易产生雷绕击。一旦避雷针安装在杆塔上,杆塔附近的雷就会被避雷针释放掉,从而降低了绕击发生的可能性。但是避雷器安装后杆塔的落雷率会增大,从而绕击减少反击增加。又因为可控放电避雷针的主放电电流幅值小,陡度低,所以对于35kV以上电压等级的高压输电线路完全可以承受此雷电放电电流,不会因此而跳闸。
结语
架空线的防雷从工程设计阶段就要认真加以考虑,应根据本地的实际情况,采取切实可行的防雷方案,选用质量可靠的电气设备和可靠性高的防雷设备,同时,真正按照等电位的原则,做好符合要求的共用接地网,综合考虑防雷与接地,并对雷击故障作详尽的调查分析,针对故障原因制订有关反事故措施。对雷电活动较频繁的地区应加强线路的运行维护工作,并在防雷设计中采取相应的有效的措施。只有这样,输电线路和设备才能避免遭受雷击。
参考文献
[1]詹铭,刘捷,曹宁.高压架空输电线路防雷措施与应用[J];《广东电力》;2012.
[1]安才生.谈如何做好架空输电线路设计[J].黑龙江科技信息.2015(33).
论文作者:梅建宜,任小龙
论文发表刊物:《电力设备》2015年第11期供稿
论文发表时间:2016/4/27
标签:线路论文; 地线论文; 过电压论文; 雷电论文; 防雷论文; 杆塔论文; 避雷针论文; 《电力设备》2015年第11期供稿论文;