身份证号:32048119850730****
引言
不饱和聚酯树脂(UPR)是由饱和二元醇与不饱和(可有部分饱和)二元酸(或酸酐)缩聚而成的聚合物,它具有典型的酯键和不饱和双键的特性。由于树脂分子链中含有不饱和双键,因此可以与含双键的单体,如苯乙烯、甲基苯乙烯等发生共聚反应生成三维立体结构,形成不溶不熔的热固性塑料。它是热固性树脂中用量最大的树脂品种,也是玻璃纤维增强材料(FRP)制品生产中用得最多的基体树脂,在工业、农业、交通、建筑以及国防工业方面得到广泛的应用。UPR因具有优良特性,故在多个工业领域或部门得到广泛应用,但其存在韧性差,强度不高,易燃烧,收缩率大等不足,使其在某些方面的应用受到限制。为扩大UPR应用范围,特别是为了满足一些特殊领域的要求,需要对UPR进行改性,以提高UPR的应用性能。本文综述了UPR在降低固化收缩率、提高阻燃性、耐热性、增强增韧、耐介质、气干性等方面的最新研究进展。
1收缩机理
研究指出,产生UPR固化体积收缩主要有3方面的原因,其一是不饱和聚酯树脂固化过程中发生交联反应,不饱和双键反应生成饱和单键,交联点上由分子间距离变为键长距离,由此发生的化学反应使占有体积减少。其二是在固化过程中,不饱和聚酯分子链由黏流态的无序分布逐渐转化成有序程度较高的分布,分子排列紧密从而"自由体积"减校其三是由于固化温度的变化引起的热收缩。不饱和聚酯树脂在固化过程中,反应放热使体系温度升高,当放热与散热达到平衡时体系处于最高温度,之后体系温度逐渐下降,在降温过程中,分子链段热运动逐渐减弱,"自由体积"逐渐减校最终可归结为占有体积和"自由体积"的减小,前者占27.5%,后者占72.5%。
2对不饱和聚酯树脂改性的认识及研究进展分析
2.1阻燃改性
合成UPR的原料多是石油化工产品,且UPR的氧指数仅为19,这是其易燃的主要原因。易燃特性使其在应用时常有火灾发生,给生命和财产造成巨大损失,因此制备出高阻燃型的UPR显的尤为迫切。目前,阻燃改性有两条途径,一是在UPR制品成型过程中加入阻燃剂,属物理方法;另一种是用含阻燃元素的原料合成UPR,属化学方法。用炭黑作为阻燃剂合成阻燃型UPR。通过高温分析实验看出,由于炭黑在聚酯中具有很好的扩散性,可以很好的与聚酯相互贯穿形成阻燃型聚酯。欧荣庆用二溴新戊二醇改性UPR,反应得到二溴新戊二醇不饱和聚酯,固化得到FR-2000树脂。制作的FR-2000树脂的玻璃钢制品阻燃性能优良,机械性能优异,透光率高,耐水性,耐自然老化性能好,避免了添加型阻燃透明玻璃钢中常常出现的制品发糊的现象。
2.2不饱和聚酯树脂收缩性改性
在不饱和聚酯树脂固体化的过程中,其体积收缩率在6%以上,10%以内,由于收缩比例较大,导致不饱和聚酯树脂的内应力影响其性能,进而限制了不饱和聚酯树脂的应用范围。通过在不饱和聚酯树脂界面位置,设置一些微裂纹结构,能够促使不饱和聚酯树脂的体积出现膨胀,进而将不饱和聚酯树脂固体化的收缩量弥补,降低内应力的产生。使用这类改性方式,能够降低不饱和聚酯树脂在固体化过程中的收缩率,使得不饱和聚酯树脂的强度、刚度、反应速度得到全面提升。
期刊文章分类查询,尽在期刊图书馆但在应用中,聚苯乙烯只应用在高温压制成型的不饱和聚酯树脂制造中,在固体化的不饱和聚酯树脂制造中应用性不强。目前,日本已经研制出来一种新型的不饱和聚酯树脂低收缩添加剂,能够提升弹性链与不饱和聚酯树脂两者间的相容性。将其应用在不饱和聚酯树脂制作中,最终得到的成品具备很好的色泽性,同时收缩率也明显降低。
2.3耐热改性
UPR会在高温下使用,但高温下易发生降解,失去其优良的物理机械性能,故未进行耐热改性的UPR不能满足高温使用要求,因此不少研究者开展了一些耐热改性方面的研究。用有机硅改性UPR,将配方量的原料投入到四口烧瓶中,在给定的工艺条件下进行缩合反应,制成有机硅改性UPR。研究结果表明,该树脂耐热性好,表观分解温度达320℃,高低温电气性能优良。用N-苯马来酰亚胺(NPMI)改性UPR,将定量NPMI加入UPR中,再加入固化剂、促进剂,浇注标准试样。结果表明NPMI的引入可以有效提高UPR的耐热性,当NPMI用量在1%~9%,UPR的热变形温度可提高4.5℃。由邻苯二甲酸酐、顺丁烯二酸酐、丙二醇、环己醇合成了环己醇封端改性的UPR,封端改性后树脂浇注体的力学性能与通用型191#树脂的力学性能基本相当,但耐热性能有所提高,同时树脂浇注体的耐水和耐酸性能均有明显提高。二苯甲烷型双马来酰亚胺(BMD)作为共聚单体与UPR进行共聚改性,实验表明BMD具有耐高温的特性,而且能与苯乙烯生成交替共聚物,所以这一共聚体系的热稳定性得到了明显的提高,也为改善UPR的耐热性提供了一种具有实用价值的方法。用一种新型的经铝处理的玻璃纤维改性UPR,分析结果是经铝处理过的玻璃纤维反应得到的UPR的耐热性比非金属改性玻璃纤维所得聚酯提高了26%,比未经改性的聚酯高658%。由于其耐热强度明显提高,从而进一步拓宽了UPR在高温领域中的应用。
结语
从上述研究工作中可以看出,围绕UPR的改性许多研究者做了大量工作,这些工作对完善或改进UPR的性能有着重要的意义,但笔者也应看到对UPR的改性研究工作也有不足。其中,笔者认为在UPR改性方法上缺乏突破性,在此提出以下几点改进和完善UPR性能的建议。其一,由于合成UPR原料的原因与树脂本身结构的缺陷造成UPR性能上的问题,因此研究工作有必要探索选用不同的原料、质构化试剂和质构化方法,从根本上解决UPR性能缺陷问题;其二,研究所用的改性剂,虽然可带来一些性能的改善,但由于改性剂自身的安全性问题,给UPR的应用安全性带来隐患,所以研究者在研究改性效果时,不能仅从改善某一性能这一角度出发,而使改性后的UPR综合性能下降;最后,要注意聚酯的生物降解性能。目前对合成高分子的最终处理法主要是焚烧处理,这样不仅浪费大量的能源,同时还会对大气造成二次污染,因此可降解UPR的研究就显得日益重要。总的来说改性方法应以保证UPR综合性能为基础,在各种性能之间找到最佳平衡点,而不能为突出某项性能,以损失其他性能为代价。随着越来越多高性能、多功能、环保型UPR研究开发成功,其应用领域将更加广泛。
参考文献:
[1]白志满.新型有机磷化合物的合成及不饱和聚酯的阻燃性能与机理研究[D].中国科学技术大学,2014.
[2]李军峰.UP/MMT纳米复合材料的制备、摩擦磨损性能及有机蒙脱土改性玻璃钢的研究[D].河北工业大学,2003.
[3]沈开猷.不饱和聚酯树脂及其应用(第三版)[M].北京:化学工业出版社,2017:469-470.
论文作者:金超
论文发表刊物:《科技尚品》2018年第11期
论文发表时间:2019/7/18
标签:不饱和论文; 性能论文; 聚酯树脂论文; 聚酯论文; 树脂论文; 双键论文; 体积论文; 《科技尚品》2018年第11期论文;