摘要:随着经济和各行各业的快速发展,在现代社会生产生活中,人们对电力的依赖程度越来越深,为了满足社会发展的能源需求,我国相继研发了各种能源生产技术,期望以此改善我国能源的供应环境。而风力发电技术作为电力能源技术体系的重要组成部分,其中的电气控制技术将直接影响到风力发电厂的稳定运行。鉴于此,本文就针对风力发电电气控制技术及应用实践做一些分析,希望能为风力发电的稳定发展提供有效参考价值。
关键词:风力发电;电气控制技术;应用实践
引言
现如今,科技无界限,电气控制技术已经越来越广泛地应用于风力发电行业。近年来,国家政策大力推进新能源建设,风力发电的相关项目也逐渐发展起来。但风电行业是一个比较复杂的行业,要想获得高效率的收益,电气控制技术在风力发电行业中的重要性也就随之显现。风能是一种新型能源,我们应该仔细考虑如何提高风力发电的整体效益。由此可见,研究风力发电电气控制技术的发展对目前我国的新能源发展有着极其重要的意义。
1风力发电电气控制技术概述
就现实情况来看,风力发电与其他发电模式相比存在较强的不稳定性,很容易受外界各类因素的影响,例如风速、风向、大气压强、温度等等,所以在电气控制技术应用的过程中,应当以此入手,进一步克服外界因素对风力发电过程的干扰。另外,为提高风能发电的效率,必须对各类风能发电设备对风力的利用效率进行系统的分析,提高其能量的转化率。例如我国在综合考虑风力发电叶片荷载、稳定性及其风能利用率的基础之上,将风力发电机的叶片长度范围设定在60至100m范围之内,转化效率极高。此外,由于风力发电设备运转的环境大多都较为恶劣,所以在设备检修与维护上如果单纯的依赖人力完成相关操作显然是不现实的,为此,应该合理融入远程遥感控制技术等,以此全面提高风力发电过程电气控制的实际成效。
2风力发电的现状
2.1风力发电系统的设备还不够完善
主要表现在很多风力发电系统在建设时,比较重视起核心功能的设备,而忽视了起辅助功能的设备,造成诸多功能作用得不到充分的发挥,影响其发电,同时也不利于电气控制作业。非线性模型复杂性极高,技术运用还不够成熟,电气控制工作受其阻碍,而线性模型虽已成熟,但工作范围和环境都有局限性,传统的电气控制技术满足不了风力发电的需求,对风力发电的持续发展不利。
2.2风力发电受外界因素的不利影响
一方面是自然因素,这是不可避免的,通常情况下,风力发电都会选择高出水平面的地理环境,提高风力发电的效果,但这也就使风力发电的运行会受大气压、温度、雷雨等自然因素的影响,这些自然因素变化较为极端,不但稳定性受影响,还会使发电设备受到损坏,另一方面是人为因素,风力发电电气控制工作需要工作人员有较强的专业能力和工作意识,因为这是一项复杂性和专业性较高的工作,工作人员素质达不到,操作要么违规,要么疏漏,不仅安全性能无法保证,还会直接导致故障问题,影响其发电。
3风力发电电气控制技术的应用实践
3.1变桨距发电技术应用实践
变桨距发电技术的主要目的就是通过改变桨叶角度对风力发电机组的风速功率进行控制,以此确保风力发电机组存在过高风速的时候能够得到有效控制。同时,在我国科学技术的不断发展背景下,变桨距的制造材料也出现了较大变化,在材料选择中逐渐倾向于轻材料,使得变桨距的整体重量逐渐降低,整体重量的减少不仅能够有效降低运行事故的发生几率,在很大程度上也给控制工作带来了便利条件。但是在变桨距发电技术的应用过程中,变桨距的运行稳定性较差问题一直无法得到有效解决,这就极大增加了人力资源和物力资源的消耗,相信在我国科学技术的持续发展下,其运行问题会得到有效解决。
期刊文章分类查询,尽在期刊图书馆
3.2定桨距失速风力发电技术应用实践
为了解决发电机组运行过程中的并网问题,在1985年,定桨距失速风力发电技术逐步应用于风力发电技术当中。发电机组运行过程中非常重要的一项因素就是定网。为了有效地将其作用率提高,我国技术人员投入了很多的精力,最终将定桨距失速的风力发电技术与实际的风力发电相结合,并将新的发电技术与传统的风力发电的技术相结合,这样做可以有效稳定风力发电设备的运行轨迹。我们从中可以看出,该技术的一项非常重要的目的就是进行功率限制,因此,其自身的构造较为复杂,且体积和质量较大,即使可以达到限制功率的目的,整个机组的运行效率也难以得到保证。所以,在这项工作的推进过程中,它的一项主要工作就是进行功率限制。功率限制主要是通过复杂的叶片结构以及较大的质量来实现的。但这无疑会对发电机组的整体运行效率造成影响,在风力级数较高的地区当中,这项技术还没有得到广泛应用。所以,在将来的风力发电电气控制技术中,我们要考虑如何才能在风力较大的地区运用这项技术。
3.3主动失速发电技术
主动失速发电技术又可以称之为混合失速发电技术,而且主动失速发电技术还包含着定桨距失速发电技术和变桨距发电技术的基本特点,这种技术主要是通过桨距角的不同变化控制风能捕捉量和风速,以此来保证风力发电系统的运行效益。但是在主动失速发电技术的应用过程中,常常会出现严重失误状况,导致功率输出受到不同程度的影响,极其不利于针对风力发电系统运行效益的控制。
3.4混合失速发电
混合失速发电又称为主动失速发电,桨距角根据具体的情况会有不同的变化,以此来控制不同条件下的风能捕获量和速度。但这个技术还有很大的上升空间,它的缺点是有可能会导致失速现象的发生,这样会对整个风力发电的功率造成很大的影响,风力发电厂也更加难以控制其发电效益。所以,电气控制技术在风力发电的具体应用过程当中,我们要弥补主动失速技术的缺陷,积极改进其不足的地方,从而最大限度地提高风力发电的效益。
3.5变速风力发电技术应用实践
变速风力发电,顾名思义,就是打破了发电机原有的恒速运动,当风速大小不同时,风力发电机的状态就会得到改变,这样一来,就可以根据具体的风速来调整其运行过程中的各种不同状态,以此得到恒定的发电频率。运行状态根据风速的不同改变,当风速较大时,发电质量以及发电效率会受到功率的影响,为了避免功率过大对其产生影响,我们要及时调控风轮转速的一系列指标;在风速较小时,我们也要力求获得更多的风能来满足平稳的输出功率。更重要的是,我国不同地区的风速的大小是不同的,其变化规律也千差万别。随着技术的发展,我们逐步深入了对这一技术的认识。从现如今的发展趋势看,该技术是未来发展的重头戏。常见的变速风力发电技术主要有以下几类,有笼型异步发电机类、永磁发电机类、交流励磁双馈型、无刷双馈发电机类以及磁场调制型等。它们的主要特点是风能转换效率较高,可以实现较好的柔韧性连接。此外,它们还可以实现对无功功率、输出功率的独立调节,调节变桨距的过程也更加简单,但转速的运行范围依然较大,这些特点均可以有效提高发电机组的功率质量。因此,我们要抛弃传统的恒速发电技术,实行变速发电。这项技术会在我国不同地区的风力发电厂得到广泛应用,是风力发电电气控制技术发展中的必经之路。
结束语
综上所述,根据全球能源供给现状,必须加强对新型清洁能源的开发。而就风力发电来看,为提高其电能转化效率,提高其发电过程中的稳定性,必须从风力发电电气控制技术入手,并结合其应用实践过程中所存在的问题,切实落实对相关技术的优化与开发工作,进而发挥出该技术经济价值与社会效益的同时,为风力发电电气控制技术的发展打下坚实的基础。
参考文献
[1]邵金云.风力发电电气控制技术发展探讨[J].科技展望,2018(04):93.
[2]王家坤.风力发电控制系统中现代信息化控制技术的应用策略[J].中国高新技术企业,2018(10):69-70.
[3]晏勤.宋冬然.现代控制技术在风力发电控制系统中的应用研究[J].电子技术与软件工程,2017(15):157.
[4]邢作霞,王超,马佳,王文静,姚兴佳.现代控制技术在风力发电控制系统中的应用[J].风能,2017(07):62-67.
[5]徐凯.双馈风力发电系统硬件在环测试平台设计与实现[J].上海:上海交通大学,2018.
论文作者:殷黎东
论文发表刊物:《当代电力文化》2019年第06期
论文发表时间:2019/7/31
标签:风力发电论文; 技术论文; 电气控制论文; 风速论文; 风能论文; 功率论文; 风力论文; 《当代电力文化》2019年第06期论文;