摘要:随着人们生活质量日渐提高,对于用电需求也越来越大,从而对用电安全这方面的要求也越来越高。而智能变电站继电保护系统对于安全这方面的重要性也是非常之大。本文能对智能变电站继电保护系统可靠性进行分析。
关键词:智能变电站;继电保护系统;可靠性分析
智能变电站继电保护系统的研究实际意义是很大的,它与我们的实际生活接触紧密,而其可靠性是重要保障。只有可靠性得到保障,我们在应用此保护系统时才会没有太多顾虑。在不同环境下选的继电保护模式也是不同的,也要因地制宜。
1智能变电站继电保护系统的结构及其原理
1.1智能变电站继电保护系统结构
智能变电站的基本特点是信息数字化和通信网络化,其继电保护系统不同于传统变电站点对点方式连接的互感器、断路器和保护单元,而是具备更多元件。合并单元将多个互感器采样数据汇集后合并,进行格式处理后把数据帧传递给交换机。智能终端是一次设备如断路器等的智能功能体现者,接受跳合闸及闭锁信息以控制断路器动作,同时采集断路器开关位置信息传递给保护单元。交换机及其相关网络替代了传统二次电缆,作为二次设备与合并单元之间的信息传递平台,实现各系统设备之间信息共享。与此同时,为实现继电保护对发生事件的时间序列上的准确性要求,需要满足全站设备的统一对时功能,配置同步时钟源。通信介质和接口必不可少,其连通性对保护系统运行正常与否产生直接影响,通常采用光纤,接口故障和通信故障效果相同,可以将接口视作通信介质组成部分。所以,完整的智能化继电保护功能通常具备八大功能模块,传输介质(TM)、互感器(MI)、合并单元(MU)、交换机(SW)、保护单元(PR)、智能终端(IT)、断路器(BR)、同步时钟源(TS)。
1.2智能变电站继电保护可靠性原理分析
所谓的可靠性,就是指元件系统能过在一定的环境范围、时间范围内,无故障的完成规定功率。在实际运行中,主要通过以下三个指标,对智能变电站继电保护可靠性进行衡量:第一,可靠度。主要是指系统及元件在规定条件之内,在有限时间之内,实现规定功率的概率,是考察一个系统可靠性的重要指标之一;第二,可用性。主要是指系统或者其他设备在较长时间之内,能够完成所规定功能的能力,简而言之,就是其系统修复能力,如果系统在出现故障时,能够快速自动修复,是具备较高可靠性的;第三,平均失效时间。是指系统在规定的条件下稳定运行到下一次发生故障的平均时间。而通过对上述三个指标则可以清楚的对智能变电站继电保护系统的可靠性进行正确的反映,从而采取有效的防护措施。
2提高智能变电站继电保护系统可靠性的具体对策
2.1做好过程层中的继电保护
在这个阶段,应该实现迅速跳闸这一系统功能,且对变电站中的母线、变压器、输电线路等电器设备进行全方位的保护,从而将电力系统的实际运行风险降至最低,给予电力调度系统必要的保护。而在保护功能的把握上应该尽可能的简化系统保护设备与系统保护装置。通常而言,当主保护定值中存在较小的波动性时,电力系统在具体运行过程中发生相应变化之后,继电保护不会发生改变,这正是继电保护系统稳定性的重要体现。但由于在智能变电站中往往存在着大量的一次设备,所以在继电保护上,其在开关的设计上也必须要与硬件进行区分,给予相对独立的保护,从而实现对变电站母线、输电线路的保护。就相同的输电线路而言,针对独立采样,可以利用不同的开关电流给予实现,并在调整的过程中用主保护的通信口予以实现,进而对系统电流进行综合把握。
期刊文章分类查询,尽在期刊图书馆在实际继电保护工作中,可以用一个多端的线路保护对智能变电站中的变压器保护以及母线保护进行定义,在对站内保护装置进行同步采样,在采样时,在变电站主站采样的基础上,实施调整,对采样数据的适用性和可靠性上予以保证。
2.2间隔层中的继电保护
需要将双重化配置应用到变电站的继电保护中,集中的配置后备保护,后备保护系统将后备设备的保护和开关失灵的保护为变电站提供出来,同时,还需要保护相邻范围内的相连线路和对端的母线,在后备设备电流的基础上对电网运行的问题和故障上进行判断,进而将有效的跳闸策略制定出来。此外,将等级集中配置在全站的全部电压中予以实现,对技术上以便实施的进行调整,对电网运行的具体情况上予以适应。并且,可以在电网运行具体情况的基础上,将几套运行方案事先设定出来,进而有效的分析站内的电网系统,将最佳的运行方案选择出来,对智能变电站的继电保护上予以实现。
2.3增加系统冗余性
为了保证智能变电站继电保护系统的安全,必须提高系统冗余性。实际操作时,可以从以下两方面做起:第一,以太网中的数据链路层技术帮助并支持变电站自动化,可以利用多种模式实现共同目标。第二,从网络构架需求分析。网络构架一般由三个网络组成,主要目的是提高变电站继电系统保护可靠性。第一,总线结构。总线结构可利用交换机进行数据信息传送,减少了接线,但是由于冗余度较差,在实际使用中,必须经过长时间操作才能实现目的。第二,环形结构。环形结构与总线结构较类似,环路上任意一处均可提供不同冗余,将其与以太网联合起来,可以形成管理交换机,具备了生成树协议,此种操作还可以给机电系统运行提供物理中断冗余,可以将网络重构控制在一定操作范围内,收敛时间较长,一般难以完成相关任务,影响了系统重构。第三,星型结构。星型结构的主要特点就是等待时间较短暂,可以应用于导频高要求的场合,没有冗余,但是将其应用到交换机运行中会影响信息传送,可靠性较低。所以给变电站选择继电保护系统网络构架时,必须结合实际情况进行分析,在详细了解各自情况后,选择合适的网络架构,提高继电系统可靠性。
2.4环形网络结构法
环形网络结构法就是间隔智能终端会提供信息,母差保护装置就会接受到来自网络传递的信息。如果使用采样值组网,母差保护装置同样会接收到经过合并后的间隔数据。当母差保护动作将出口信息发送给各间隔智能终端后,由于网络报文的流量的大小是不确定,就会限制住母差保护装置容纳量。由于过程层的交换机要承担比较多的报文,但是每一台的交换机接入的单元信息数量已经超出,这就使可靠性降低。为此,就要设置交换机的光纤口或装置。值得注意的是,同时接入单口时要限制合并单元的数量,为了接受更多的间隔采样可以用千兆的交换机或对多交换机进行分担带宽。
结束语:
继电保护对于智能变电站的安全稳定运行具有非常重要的作用,智能变电站未来发展的大方向之一就是各个设备的继电保护,因此,加大对于继电保护研究的力度有着十分重要的现实意义。智能电网发展速度非常快,电力技术也是日新月异,社会对于智能变电站相关要求日益提升,为了满足社会对于智能变电站的需求,有必要针对智能变电站各设备继电保护进行深入研究。
参考文献:
[1]浮明军,刘昊昱,董磊超.智能变电站继电保护装置自动测试系统研究和应用[J].电力系统保护与控制,2015(1):40-44.
[2]李宝伟,倪传坤,李宝潭,等.新一代智能变电站继电保护故障可视化分析方案[J].电力系统自动化,2014(5):73-77.
[3]路淮丰.智能变电站继电保护可靠性探析[J].通讯世界,2014(24):76~77.
[4]沙海源.智能变电站继电保护系统可靠性分析[J].精品,2016(2):60~61.
论文作者:瞿海燕
论文发表刊物:《基层建设》2018年第28期
论文发表时间:2018/11/16
标签:变电站论文; 系统论文; 继电保护论文; 智能论文; 可靠性论文; 交换机论文; 结构论文; 《基层建设》2018年第28期论文;