提高中学数学教学质量,不仅仅是为了提高学生的数学成绩,更重要的是能使学生学到有用的数学。为此,笔者认为在中学数学教学中培养数学建模意识和建模能力无疑是我们中学数学教学改革的一个正确的方向。
一、数学的发展、社会的进步呼唤数学模型
新课改后在高考试题中强调了考查数学应用问题,应用数学解决问题的能力,也是一个跨学科的问题,在物理、化学、生物等学科中都有涉及,近年来还在进一步强化。但是学生一旦碰到联系实际的问题却又不会用数学的方法去解决它,大部分同学学了十二年的数学,却没有起码的数学思维,更不用说用创造性的思维自己去发现问题,解决问题了。由此看来,中学数学教与学的矛盾显得特别尖锐。
我国普通高中新的数学教学大纲中明确提出:“要切实培养学生解决实际问题的能力”,增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。
二、把握理解数学模型的概念
著名数学家怀特海曾说:“数学就是对于模式的研究。”所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。具体地讲,数学模型方法的操作程序大致上为:
实际问题→分析抽象→建立模型→数学问题
↓检验 ← 实际解 ← 释译 ← 数学解↓
由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理。这就需要把数学建模意识贯穿在教学的始终,不断引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。
期刊文章分类查询,尽在期刊图书馆
三、构建数学模型的基本途径和方法
1.留心日常生活建立数学模型。中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。
2.学科内结合建立初步数学模型。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型,把相关问题放入到这些模型中来解决;又如在讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
3.学科间结合建立数学模型。由于数学是学生学习其他自然科学以至社会科学的工具,而且其他学科与数学的联系是相当密切的。因此,我们在教学中应注意与其他学科的呼应,这不但可以帮助学生加深对其他学科的理解,也是培养学生建模意识的一个不可忽视的途径。例如教了正弦型函数后,可引导学生用模型函数y=Asin(ωx+φ)写出物理中振动图象或交流图象的数学表达式。这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其他学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。
4.专题研究建立数学模型。我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。
四、把构建数学建模意识与培养学生创造性思维过程统一起来
我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础。创造性地使用已知条件,创造性地应用数学知识。只要我们教师在教学中仔细地观察,精心地设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。培养学生创造性思维的过程有三点基本要求:第一,对周围的事物要有积极的态度;第二,要敢于提出问题;第三,善于联想,善于理论联系实际。
论文作者:方根太
论文发表刊物:《中小学教育》2016年10月第258期
论文发表时间:2016/11/18
标签:数学论文; 建模论文; 数学模型论文; 模型论文; 意识论文; 能力论文; 实际问题论文; 《中小学教育》2016年10月第258期论文;