李新新 青岛大学数学与统计学院 青岛 266071
摘要:本文研究了三维空间中带有科氏力的Navier-Stokes方程的时间周期问题,证明了当外力属于Besov空间时,方程的周期mild解的正则性.
关键词:Navier- Stokes方程;mild解;正则性
参考文献
[1]P. Konieczny, and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 250 (2011), 3859–3873.
[2]Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Navier-Stokes equations in a rotating frame in R3 with initial data nondecreasing at infinity, Hokkaido Math. J., 35 (2006), 321–364.
[3]Iwabuchi T, Takada R. Dispersive effect of the Coriolis force and local well-posedness for the Navier-Stokes equations in the rotational framework NCTAM papers, National Congress of Theoretical and Applied Mechanics, Japan. National Committee for IUTAM, 2012:43-43.
[4]M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491.
[5]H. Kozono, T. Ogawa, and Y. Taniuchi, Navier-Stokes equations in the Besov space near L∞ and BMO, Kyushu J. Math., 57 (2003), 303–324.
[6]A. Mahalov and B . Nicolaenko, Global Regularity of 3D Rotating Navier-Stokes Equations for Resonant Domains, Applied Mathematics Letters 13 (2000) 51--57.
[7]Hideo Kozono, Yuki Mashiko and Ryo Takada,Existence of periodic solutions and their asymptotic stability to the Navier–Stokes equations with the Coriolis force,J. Evol. Equ. 2014 Springer Basel, DOI 10.1007/s00028-014-0228-4
作者简介:李新新,女,山东聊城人,汉族,1990.08.06,青岛大学,数学科学与统计学院,研究生,应用数学,偏微分方程理论及其应用。
论文作者:李新新
论文发表刊物:《文化研究》2016年2月
论文发表时间:2016/7/26
标签:青岛大学论文; 方程论文; 正则论文; 聊城论文; 周期论文; 汉族论文; 数学论文; 《文化研究》2016年2月论文;