法拉第电磁感应定律的突破_感应电动势论文

法拉第电磁感应定律难点突破,本文主要内容关键词为:法拉第论文,电磁感应论文,难点论文,定律论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

一、难点形成原因

1.关于表达式

此公式在应用时容易漏掉匝数n,实际上n匝线圈产生的感应电动势是串联在一起的,其次△Φ是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E与Φ、的关系容易混淆不清。

2.应用法拉第电磁感应定律的三种特殊情况解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3.公式E=nBSωsinθ(或E=nBSωcosθ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破

1.一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解(如表1)。

表1

2.明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题。

(1)导体切割磁感线产生的感应电动势E=Blv,应用此公式时B、l、v三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsinθ求解,这也是不可取的。处理这类问题,最好画图找B、l、v三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv求解。此公式也可计算平均感应电动势,只要将v代入平均速度即可。

(2)导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以

(3)矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBSωsinθ计算,何时用E=nBSωcosθ计算,最容易记混。其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBSω。这样,线圈从中性面开始计时感应电动势按E=nBSωsinθ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBSωcosθ规律变化。并且用这两个公式可以求某时刻线圈的磁通量变化率,不少学生没有这种意识。推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。

另外,求的是整个闭合回路的平均感应电动势,△t→0的极限值才等于瞬时感应电动势。当△Φ均匀变化时,平均感应电动势等于瞬时感应电动势。但三种特殊情况中的公式通常用来求感应电动势的瞬时值。

三、难点例析

例1 关于感应电动势,下列说法正确的是()。

A.穿过回路的磁通量越大,回路中的感应电动势就越大

B.穿过回路的磁通量变化量越大,回路中的感应电动势就越大

C.穿过回路的磁通量变化率越大,回路中的感应电动势就越大

D.单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大

图1

例3 如图1所示,两条平行且足够长的金属导轨置于磁感应强度为B的匀强磁场中,B的方向垂直导轨平面。两导轨间距为L,左端接一电阻R,其余电阻不计。长为2L的导体棒ab如图1所示放置,开始时ab棒与导轨垂直,在ab棒绕a点紧贴导轨滑倒的过程中,通过电阻R的电荷量是__。

分析 求通过电阻R的电荷量首先须求出通过电阻R的平均电流,由于电阻R已知,因此根据法拉第电磁感应定律求出这一过程的平均感应电动势是解题关键。

图2

例4 如图2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是()。

A.越来越大 B.越来越小

C.保持不变 D.无法判断

分析 金属棒运动过程中速度越来越大,但产生感应电动势的有效切割速度仅仅是速度的水平分量,而在金属棒运动过程中是不变的。

解 导体切割磁感线产生的感应电动势E=Blv,金属棒运动过程中B、l和v的有效分量均不变,所以感应电动势E不变,故选C。

评注 应用感应电动势的计算公式E=Blv时,一定要注意B、l、v必须两两垂直,若不垂直要取两两垂直的有效分量进行计算。

图3

例5 如图3所示,矩形线圈abcd共有n匝,总电阻为R,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B。让线圈从图示位置开始以ab边为轴匀速转动,角速度为ω。若线圈ab边长为,ad边长为,在磁场外部分为,则

(1)线圈从图示位置转过53°时的感应电动势的大小为__。

(2)线圈从图示位置转过180°的过程中,线圈中的平均感应电流为__。

(3)若磁场没有边界,线圈从图示位置转过45°时的感应电动势的大小为__,磁通量的变化率为__。

评注 本题考查了三个知识点:

①感应电动势的产生由△Φ决定,△Φ=0则感应电动势等于零;

②磁通量的变化量的求法,开始和转过180°时平面都与磁场垂直△Φ=2BS,而不是零;

③线圈在匀强磁场中绕垂直于磁场的轴转动产生感应电动势的表达式及此过程中任一时刻磁通量的变化率的求法。

图4

例6 一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图4(甲)所示。设垂直纸面向里的磁感应强度方向为正,垂直纸面向外的磁感应强度方向为负。线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。已知圆形线圈中感应电流i随时间变化的图象如图4(乙)所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是()。

分析 由图4(乙)可知线圈中的感应电流是周期性变化的,因此只研究一个周期(即前两秒)的情况即可。0~0.5 s,感应电流沿逆时针方向且大小不变,所以垂直纸面向里的磁场在均匀增强或垂直纸面向外的磁场在均匀减弱;0.5 s~1.5 s,感应电流沿顺时针方向,所以垂直纸面向里的磁场在均匀减弱或垂直纸面向外的磁场在均匀增强;1.5s~2s的情况同0~0.5s。

解 A选项中0~0.5s,磁场垂直纸面向外且均匀增加,与图4(乙)中感应电流方向矛盾,故A错;B选项中0~0.5s,磁场垂直纸面向外且均匀减弱符合条件,但0.5s~1s,磁场垂直纸面向里且均匀增强与图4(乙)中感应电流方向矛盾,故B错;C选项中0~0.5s,磁场垂直纸面向里且均匀增强,0.5s~1s,磁场垂直纸面向里且均匀减弱,1s~1.5s,磁场垂直纸面向外且均匀增强,1.5s~2s,磁场垂直纸面向外且均匀减弱,都与题意相符,故C对;D选项中0~0.5s,磁场垂直纸面向里且均匀增强,0.5s~1.5s,磁场垂直纸面向里且均匀减弱,1.5s~2s磁场垂直纸面向里且均匀增强,都与题意相符,故D对。

答案:CD

评注 本题考查了从图象上获取信息的能力,在回路面积一定的情况下,B-t图象的斜率反映感应电动势的大小,B大小或方向的改变决定回路中感应电动势的方向。若给出的是Φ-t图象,情况是一样的。

标签:;  ;  ;  ;  

法拉第电磁感应定律的突破_感应电动势论文
下载Doc文档

猜你喜欢