浅析软岩巷道支护原理论文_万文俊

浅析软岩巷道支护原理论文_万文俊

盘州市安全生产监督管理局柏果安监分局 贵州省.盘州市 553500

摘要:随着矿井开采向深部延伸,原岩应力与构造应力不断升高,使得高应力软岩巷道围岩稳定性控制问题成为困扰煤矿安全生产的主要难题。通过阐述软岩的特性和软岩巷道支护技术,表述了软岩的多样性,在微观上存在差异性,因此构成的软岩巷道的复合型变形力学机制类型存在多样性。说明了软岩巷道支护技术原理和支护原则,并从非线性力学设计介绍新的支护方式。

关键词:软岩巷道;控制技术;技术展望

软岩巷道在我国分布广泛,随着煤矿开采深度的不断增加,井下煤矿巷道将处于更高的地应力环境中,尤其在地质构造活动强烈的地区,井下巷道支护及稳定性更加难以保证。软岩巷道围岩软弱,强度低,具有膨胀性埋深大,地应力水平高。采动荷载作用大变形、高地压、难支护变形时间长、量大、速度快,破坏程度高,传统支护失败。深部软岩巷道显现出显著的大变形、高地压、难支护特点。

1、软岩的基本概念及其分类

1.1软岩的基本概念

在上世纪60-90年代初,软岩的概念在国内外一直争论不休,到90年代末期,提出了地质软岩和工程软岩的概念。国际岩石力学学会将地质软岩定义为单轴抗压强度在0.5~25 MPa的松散、破碎、软弱及风化膨胀性一类岩体的总称。而工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。工程岩体是软岩工程研究的主要对象,是巷道、边坡、基坑开挖扰动影响范围之内的岩体组合特征,包括岩块、结构面及其空间组合特征。

工程软岩和地质软岩的关系是:当工程荷载相对于地质软岩的强度足够小时,围岩没有产生大的破坏区,地质软岩不产生软岩显著塑性变形力学特征,即不作为工程软岩。只有产生大破坏区和显著变形才作为工程软岩。在大深度、高应力作用下,部分地质硬岩(如泥质胶结砂岩等)也呈现了显著变形特征,则应视其为工程软岩。

1.2 软岩分类及基本物理与力学属性

软岩仅是地质岩体中一部分,但却是地质介质中极为复杂的部分。按照软岩自然特征、物理化学特性,以及在工程力的作用下产生显著塑性大变形的机理作为分类的主要依据,软岩分为五类:即低强度软岩、膨胀性软岩、高应力软岩、节理化软岩和复合型软岩。软岩有别于硬岩而独具的特性有以下几点:

(1)水理性(化学)。软岩颗粒之间胶结程度差,缺乏牢固的连结,层、节理发育,造成水易进入内部,导致岩层节理、层理裂隙中充水,削弱岩层颗粒之间连接力,引起软化、崩解、体积膨胀。水在软岩中的存在状态可能有水蒸气、固态水(如冰、化学结晶水等)、分子结合水、吸附水、毛细管水和重力水(自由水)等。高岭石、伊利石等遇水软化、碎裂、崩解、体积不膨胀。蒙脱石则体积膨胀,最终导致软化、松散崩解。

(2)流变性(力学)。流变性是指材料应力应变与时间因素有关的性质。

期刊文章分类查询,尽在期刊图书馆与塑性变形区别:蠕变不超过弹性极限情况;软岩是非线性的弹塑-粘性介质,变形即使所受的荷载很小,只要作用时间长,也会发生永久变形。流变有两种形式,即蠕变和松弛。软岩体不但流变速度快,变形量大,而且明显地表现出蠕变变形的三个阶段的影响。试验表明,其强度一般不超过极限强度的70%,有时甚至更低。

(3)可塑性。可塑性是指软岩在工程力的作用下产生变形,去掉工程力之后这种变形不能恢复的性质。低应力软岩的可塑性是由软岩中泥质成分的亲水性所引起的;节理化软岩是由所含的结构面扩展、扩容引起;高应力软岩是泥质成分的亲水性和结构面扩容共同引起的。

(4)崩解性。低应力软岩的崩解性是软岩中的粘土矿物集合体在与水作用时膨胀应力不均匀分布造成崩裂现象;高应力软岩和节理化软岩的崩解性则主要表现为在工程力的作用下,由于裂隙发育的不均匀造成局部张应力集中而引起的向空间崩裂、片帮的现象。当然,高应力软岩也存在着遇水崩解的现象,但不是控制性因素。

2、软岩巷道支护原理

我国软岩巷道支护理论早期有于学馥提出的“轴变论”理论,冯豫、陆家梁等在“新奥法”基础上提出的联合支护理论。在此基础上孙钧、郑雨天等提出的锚喷——弧板支护理论,后来中国矿业大学董方庭提出的松动圈理论和方祖烈提出的主次承载支护理论。对围岩支护归纳要点如下:

2.1 提高围岩自撑能力

围岩暴露后,要立即架设临时支架,临时支架要有较大变形能力和支撑能力,并作为永久支护一部分,与永久支护联为一体共同抵抗地压,当采用锚喷做临时支护时,最好选用可拉伸锚杆或柔性喷层,用一定手段把围岩残余强度与支护形成一体,提高围岩自撑能力和自稳时间。

2.2 永久支护应是封闭型结构,关键是控制底鼓

巷道开凿后,由于施工方法和工艺限制,一般往往不注重底拱封闭时间和施工质量,底板封闭又属隐蔽工程,造成质量低劣、间隔时间长,这正是软岩巷道支护上的薄弱环节,巷道受力后,多先在底板处失稳,然后向上扩展。当永久水沟形成时,由于排水影响更容易造成底板强烈变形和应力重新分布,最后导致巷道变形严重或破坏。因此施工过程中,底拱质量好坏是关键问题。

2.3 支架应有足够变形能力和足够承载能力

当原岩应力较大时,要完全阻止围岩变形和破坏,这就需要高强度、高抗力支架,但由于目前很多条件制约,大面积应用推广高强支架还有一定困难,因此,选用支架时要求支架要有较大变形能力来释放围岩应力,一般在一次支护后间隔一段后架设,让围岩充分变形和围岩自身压能释放后,进行二次支护,这种支护必须在支架允许变形范围内,使支架与围岩相互作用达到平衡,一般多用U型钢可缩型支架来完成。

2.4 严密充填

封闭与加固衬砌中,充填与充填材料亦相当重要,充填不仅使支架或碹体对围岩产生作用,亦能防止围岩松动与脱落,又使支架或碹体均匀受载,提高承载能力。巷道开凿后,围岩在裸露状态下,风化、水化作用使围岩强度大大降低,并失去稳定性,因此及时封闭加固围岩(初喷或复喷)是提高围岩强度和稳定性的必要手段。

3 软岩巷道围岩稳定控制原则

由于软岩工程具有变形速度快、持续时间长、导致变形量大的特征,所以软岩工程应采取科学的支护原则与与对策措施。要根据不同的压力类型选用不同的巷道支护方法,降低围岩应力和先放后让与边让边抗结合,消除“环境效应”对岩体强度的不利影响,根据围岩压力分布特点选择合理的断面形状,通过施工监测动态调整支护设计与参数。按如下原则控制:

3.1 整体性原则。使支护与围岩形成的复合体发挥协同作用,表现出较大的刚度和较强的抵抗变形能力。

3.2 结构性原则。就是从支护与围岩共同作用形成的复合结构中的应力状态出发,通过加强锚固或增加锚固深度,改善支护结构中关键部位的应力状态,保证支护结构整体应力状态的均衡。

3.3 全面性原则。就是在加强巷道顶帮支护的同时,加强巷道底角和底板围岩的支护,形成全断面支护结构。

3.4 有效性原则。保证形成的支护结构具有较大刚度和较强的承载能力,满足有效抵抗静动压作用巷道围岩碎涨变形和蠕变变形的要求。

3.5 时效性原则。考虑支护体的长时强度,避免支护体在静动压作用下进入屈服状态,导致支护结构不能满足长期稳定的需要。

论文作者:万文俊

论文发表刊物:《建筑学研究前沿》2018年第9期

论文发表时间:2018/8/30

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅析软岩巷道支护原理论文_万文俊
下载Doc文档

猜你喜欢