摘要:近几年来,随着我国电力工业水平的快速发展,电网规模与日俱增,且网络的密集程度也有了较为明显的增长。在整个电气系统当中,作为一种极其重要的电气设备,电力变压器继电系统充当着一个负责转换的中间桥梁的角色。电力变压器很容易受到外接负荷的作用,因此在其工作期间可能会出现各种类型的故障,将对电力系统的稳定运行造成直接的影响,甚至会对大容量的变压器造成一定程度的损坏。是以,为使供电的安全、可靠性具有一定的保障,就必须根据具体的工作情况设置相应的继电保护装置。本文对电力变压器继电保护设计进行了探讨,分析了电力变压器继电保护的工作原理,介绍了电力变压器继电保护的基本构成,指出了电力变压器继电保护系统常见的故障类型。
关键词:变压器;继电保护;工作原理;基本构成;故障类型
1电力变压器的常见故障
电力变压器的运行,具有两种不同形态的运行模式,其中正常运行与带病运行有着本质上的区别,正常运行状态的下的变压器,在不受到外力的影响下,不容易产生故障,而带病运行的变压器则极易产生故障问题。
1.1正常运行时
通常情况下,变压器不会受到内部环境的影响,但由于变压器变电压力的不同,各变压器之间可能存在电压不稳的状况,不稳定的电压极有可能是促使变电压力产生变化的主要诱导因素。
1.1.1变压器油箱内部故障
变压器油箱的内部故障分为多种情况,而变压器的检测,需要按照相关顺序进行,通过电传导的方式,进行内部故障的排查,首先故障发生率最高的影响因素是线圈,早期的线圈主要采用银质与金质进行制造,具有良好的传导性,传输稳定性好,不容易产生老化,但由于受到当时经济环境的影响,采用以上材料制造的线圈频频发生失窃事件,因而不得不采用铜质作为线圈的主要制作材料,相比于金质与银质材料,铜质材料更加容易老化,同时线圈的工作环境始终处于高温,更加速了线圈的老化程度,使变压器油箱内部更容易出现故障问题。
其次是油箱内部的短路问题,油箱内部的短路问题由来已久,在诸多的变压器故障中,油箱内部的短路处理难度较大,主要原因是工作量较大,需要对内部进行逐一的排查,成本较高,部分变压器由于使用年限较长,大多数企业选择更换变压器或变压器油箱,而非是拆除维修。变压器中的高强度振动,是产生油箱短路的主要原因。最后一种是油箱内部的环境变化,引起的变压器内部的故障,为能够对电压能够有效的分配,变压器内部,必然产生巨大的热能,而高强度的热能源,则促使变压器内部的部分零件出现坏损的情况,铁芯是变压器内,坏损最为频繁的零件,铁芯损坏极有可能生产氧气,而氧气的堆积,对变压器内部其余零件也具有一定的腐蚀能力,进而增加了变压器的故障几率。
1.1.2变压器油箱外部故障
变压器的外部故障,主要是接地设备所产生的问题,接地设备的不规范安装与操作,促使外部的绝缘设施发生损坏,进而日高了外部损坏的几率。
1.2带病运行时
变压器的带病运行,主要是变压器超出了自身的运载负荷,在高压强的环境下进行工作,带病运行的产生,也可能是变压器超出了自身的运行期限,超期使用也是变压器带病运行的主要因素,变压器带电运行,极易造成变压设备的损坏,同时带来严重的后果与经济损失,对提高变压器的安全稳定运行,造成不利影响。
2电力变压器继电保护设计优化方法
2.1差动保护设计
将变压器两侧的电流互感器二次侧按正常时的“环流接线”是变压器差动保护动作电流设计的原则。
期刊文章分类查询,尽在期刊图书馆如果变压器处于正常运行的状态,那么差动继电器中的电流为其两侧电流互感器CT的二次电流之差,其数值趋于0。如果差动继电器不发生任何动作,那么其保护也不会有任何作为。也就是说,如果在电流互感器二次回路端线,并且变压器处于最大符合的状态下,差动保护是不会产生任何动作的。随着计算机芯片性能的提升,对位于变压器1套保护装置中所具有的主保护以及各侧全部后备保护的两套主变压器微机型保护装置进行了全力开发,其成果已经被广泛应用于实际工程中。所以,在330kV及以上高压侧电压的变压器可以采用安装双重差动保护的方法对电力变压器引出线、套管及其内部短路故障进行反应,从而实现有效反应电力变压器绕组及其引出线的多相短路及绕组匝间短路的纵联差动保护,同时也可以将电流速断保护作为主保护,另外也能达到将瞬时动作于断开各侧断路器的目的。
2.2瓦斯保护设计
除了瓦斯保护可以动作,像差动保护以及其他有关保护设计通常是都不能进行动作的。瓦斯保护主要是依靠气体继电器来实现动作的,其位于变压器油箱和油枕之间的连接导油管中。瓦斯保护主要有两种:
①首先轻瓦斯保护动作于信号,然后依照气体的属性,包括:颜色、可燃性、数量以及化学成分来判断保护的理由以及电力变压器继电保护装置故障的性质。根据此有关工作人员则可以及时察觉故障的发生并有针对性地对故障进行相关处理。
②首先重瓦斯保护动作于断路器跳闸,然后通过监视确定气体发生的速度,并对气体的不同特征以及相关成分进行剖析,从而根据有关分析间接地推测、判断造成故障发生的原因、故障出现的部位和以及故障的严重程度。
2.3过电流保护设计
①低压变压器过电流保护设计。三相式三卷变压器通常用于变压器低压侧,而在压侧短路时高、中压侧的阻抗保护通常无法发挥作用,起不到保护功能,因此难以达成作为相邻元件所具有的后备保护需求。在这种情况下可以在低压侧安置复合电压闭锁过流保护,并同时在其高、中压侧都设计并安装复合电压闭锁过流保护以及零序方向过电流保护或间隙保护等。
②高压变压器的保护设计。在电力变压器高压侧的过电流保护对低压侧母线规定有灵敏系数的时候,可以在电力变压器低压侧断路器和电力变压器高压侧短路器上设计安装有关的过电流保护装置。如果电力变压器低压侧母差保护发生校验停运现象,或者是因为故障出现拒动问题以及开关与TA间出现不正常现象的时候,过电流保护装置则可以作为电力变压器低压侧母线的主保护以及后备保护。不过需要注意的是,一旦出现的是非金属性短路,在经过弧光短路的时候,则容易出现阻抗保护灵敏度不足以及整定延时超过2s等情况。基于以上分析,应该在电力变压器的高压侧也安装一个保护变压器热稳定的反时限过流保护装置,并且该装置的整定值必须根据电力变压器的热稳定要求进行设置。另一方面在电力变压器的低压侧应当另行设计保护,或者可以在电力变压器低压侧的中性线上实际零序电流保护装置。值得关注的是,需要根据中性线不平衡电流不超过变压器额定电流的25%的要求设计动作电流。
③负序过电流保护设计。在按照相间后备保护远后备原则进行配置的时候,必须避免被保护电力变压器所连接相邻线路发生一相断线时,在流过保护安装位置的时候出现负序电流。另外为了不引起负序过电流保护出现非选择性动作,在灵敏度方面应当配合相邻线路零序电流保护的后备段。
3结语
总而言之,从以上的分析当中我们不难看出,电力变压器继电保护系统在整个电力系统之中占据着十分重要的位置。因此,相关工作人员对于电力变压器继电保护系统当中可能存在的故障与问题应该及时进行解决,以充分保证电力系统的正常运行工作。与此同时,通过以往的工作经验以及调查研究,我们会发现,二次回路故障和电流互感器故障等问题是电力变压继电保护系统中最容易出现的问题。对此,相关技术人员应针对这一方面进行积极的研究和改进,这一举措将具有重大的现实意义。
参考文献:
[1]周迅燕.浅谈电力变压器继电保护设计[J].科技创新与应用,2014.
[2]刘迎新,赵世显.电力变压器继电保护设计[J].城市建设理论研究(电子版),2016.
论文作者:赵开灿,邢燕
论文发表刊物:《电力设备》2017年第10期
论文发表时间:2017/8/8
标签:变压器论文; 故障论文; 电力变压器论文; 电流论文; 油箱论文; 继电保护论文; 低压论文; 《电力设备》2017年第10期论文;