摘要:储能装置靠近负荷布局,可以减缓电网输送容量的扩展需求,容量较小的储能装置通过快速的电能存取,实现较大的功率调节,快速地吸收“剩余能量”或补充“功率缺额”,从而提高电力系统的运行稳定性,特别是对重要用户,可以实现无缝电力供应,这对于电力系统外部晃电时炼油化工生产的平稳运行具有巨大的应用价值。本文探讨了储能技术在电力系统中的应用。
关键词:储能技术;负荷控制;技术;电力系统;应用
随着新能源(风能、太阳能、燃料电池等)的日益普及, 以及电网调峰、提高电网可靠性和改善电能质量的迫切需求, 电力储能系统的重要性日益凸显。近年来随着国家节能减排政策的实施,储能已经逐渐成为电力生产的第六环节。社会在不断的发展,我国的市场运行体制也在不断的发展与变革,这对电力市场也造成了很大的影响,为了满足社会对电能的需求,相关人员也对电能计量的效率提出了新的要求。在电力计量中应用负荷控制技术,可以有效的达到这些新要求,也可以改善电网负荷曲线的形状,实现电力负荷运行的稳定性与均衡性。在电力计量中应用负荷控制技术可以有效的提高电网运行的经济性,为电力企业创造更加的经济效益。负荷控制技术是科技不断创新的产物,其需要借助计算机以及网络通信技术,可以提高电力计量的效率以及电力计量的管理水平,从而推动电力行业的稳定发展。
1 常用的储能技术
1.1 抽水蓄能
抽水蓄能在应用时配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。
1.2 飞轮储能
飞轮储能(Flywheel Energy Storage)是将能量以动能的形式储存在高速旋转的飞轮中,其原理是由电能驱动飞轮到高速旋转,电能转变为飞轮动能而储存,当需要电能时,飞轮减速,电动机作发电机运行,将飞轮动能转换成电能,飞轮的加速和减速实现了充电和放电。
1.3 压缩空气储能
压缩空气储能系统主要由两部分组成。一是充气压缩循环,二是排气膨胀循环。压缩时,电动机/发电机作为电动机工作,利用夜间低谷负荷时多余的电力驱动压缩机,将高压空气压入地下储气洞里;白天峰荷时,电动机/发电机作为发电机工作,储存的压缩空气先经过回热器预热,再使燃料在燃烧室里燃烧后,进入膨胀系统中做工发电。
1.4 电池储能
1.4.1 钠硫电池
钠硫电池(NAS)是一种新型的蓄电池,它采用的是熔融液态电极和固体电解质,其中,负极的活性物质是熔融金属钠,正极活性物质是硫和多硫化钠熔盐,而固体电解质兼隔膜的是一种专门传导钠离子的Al2O3陶瓷材料。钠硫电池的储能密度高达140kWh/m3,系统效率可达80%,单电池的寿命已能达15 年,充放电循环寿命也可达6000 次。
1.4 2 钒液流电池
钒液流电池(Vanadium Redox-Flow Battery)简称VRB。可将化学能和电能相互转换的储能系。化学能存储于不同阶态的钒离子中,电解质溶液平行流过电极表面并发生电化学反应,通过双电极板收集和和传导电流。
期刊文章分类查询,尽在期刊图书馆
2 储能技术以及负荷控制在现代电力系统中的应用
2.1 削峰填谷
削峰填谷作用的发挥,成功地改善了电力系统的日负荷率,大幅度提升了发电设备的使用效率,促使电力系统的运行效率显著提升。在电力的生产过程当中,无论是发电、输电、还是变、配电,都需要在极短的时间内完成,所以,就需要实现发电、供电以及用电的平衡一致。而电力的需求的稳定性较差,昼夜之间、四季之间都是存在重大差异的,而要想完全满足不同时段的需求,在储能技术没有合理应用的时期,是很难做到的。储能技术的广泛应用,有效地利用了大量的可再生能源以及分布式资源,电力系统只需要根据市场的平均需求,进行发电,在使用低谷时,将电能储存起来,以备高峰时段转换电能,满足用户需求。这样既可以提供充足的电力,满足人们日益增长的电力需求,还能够有效地降低成本,提高企业的经营效益。从而更好地实现电力系统的安全性、稳定性以及可靠性。
2.2 供给应急能源,确保系统的可靠性,提升供电质量
当出现突发事件,例如:大面积暴雪以及暴雨等。导致电网发生崩溃时,为了保证医院、通信以及消防等重要场所的电力稳定,供电企业会利用储能设备充当临时电源为其供电,并为电网的修复工作争取更多的时间。同时,在电力电子交流技术的应用下,可以实现高质量的有功功率调节以及无功控制,从而将系统中因各种因素影响而导致的功率不平衡问题有效解决,用户的用电质量明显提升。
3 电力计量中负荷控制技术的应用情况
3.1 基于负荷控制系统的应用说明
当前,负荷电力控制技术在电力计量中的应用主要体现在采用负荷控制技术建立的电力负荷控制系统在电力计量中的应用,包含如下几点:一是数据的采集和共享。系统可以实现电能双向计量,还可以自动采集客户电能量数据、电能质量数据、各种电气和状态数据,对数据进行合理性检查、分析和存储管理。而且所有数据可以通过统一的平台进行管理和发布,实现信息共享。二是负荷记录。系统的负荷记录功能提供了客户可以定制的数据存储机制,同时支持灵活的查询方式、大容量的数据存储。三是远程控制。系统支持从主站以密文方式下发命令,执行跳闸、允许合闸、报警、报警解除、保电、保电解除等操作,确保电力计量中相关负荷控制的有效执行。
3.2 负荷控制系统实际应用的注意事项
为了更好地发挥负荷控制系统在电力计量中的优势,要求在将负荷控制系统投入实际使用时应注意如下几点:首先,专用变压器供电的电力用户均应安装电力负荷控制终端装置,这是使用负荷控制系统有效开展电力计量工作的重要前提。其中新增用户,应同步安装电力负荷控制终端装置,已经供电的用户,应按照相关要求分期分批进行安装、调试和投运电力负荷控制终端。其次,相关电力企业管理部门应组织制定电力负荷控制系统装置的施工管理制度和工艺标准,保证系统装置的安装调试质量,同时加强对所辖各地区电力负荷控制系统的实用化评价,不断完善和提高系统运行水平,更好地服务电力计量工作。
3.3 负荷控制系统应用于电力计量的优势
目前我国采用电力负荷控制技术建立的负荷控制系统大多具有当地闭环控制、远程遥控控制、中继站控制、系统参数设置、系统操作以及用电管理等功能,这些功能在电力计量中的应用具有如下几个方面的优势:一是通过负荷控制系统可以对电力负荷以及客户的用电状况进行实时监测,使日负荷曲线变得比较平坦,就能够使现有电力设备得到充分利用。二是可以稳定电网的运行方式,提高供电的可靠性,负荷控制系统的相关功能模块能够对一些故障迅速做出反应,从而确保电网安全稳定。三是负荷控制系统可以对客户、电量、电价、电费等营销和服务的关键指标和环节实行集约化、精细化管理,另外控制中心通过电力负荷控制反馈的数据情况可以搞清各用电企业的用电特性,并据此制定可主动避峰、可安排轮休的工业用电负荷管理目标,实现电力运行方式的优化。
参考文献:
[1] 巩俊强,邓浩,谢莹华.储能技术分类及国内大容量蓄电池储能技术比较[J]. 中国科技信息. 2012(09)
[2] 杨卫东,姚建国,杨胜春.储能技术对未来电网发展的作用分析[J]. 水电自动化与大坝监测. 2012(02)
论文作者:夏荣华
论文发表刊物:《电力设备》2018年第10期
论文发表时间:2018/7/26
标签:负荷论文; 电力论文; 储能论文; 电能论文; 控制系统论文; 技术论文; 电网论文; 《电力设备》2018年第10期论文;