王波 湖北省十堰市郧阳区胡家营镇初级中学 湖北 十堰 442539
【摘要】“授之以渔”是教育的根本目标,而在常态的教学过程中我们如何评价学生已经会“渔”,甚至善“渔”、乐“渔”是我们教师需要重点考虑的一项课题,也是教师在课堂教学过程中需要深入研究的一项目标。学生刚开始上学时接触的学科就是语数外这三大科目,但因为学生的思维不是很活跃,所以对学生来说数学是复杂的,尤其是初中数学的理论知识更是不尽如人意。但身为一名人名教师教导学生很好的学习数学,帮助学生寻找学习数学的有效方法是教师的职责所在。经过很多次的实验,发现以变促教这种方法对初中生来说很实用。本文针对以变促教展开一系列的分析,希望可以对初中的教师提供帮助。
【关键词】以变促教;引领;高效数学
中图分类号:G688.2文献标识码:A文章编号:ISSN1672-2051 (2020)03-051-01
引言:
以变促教,根据字面上意思的解释就是运用变化不同方式促进教学。教师改变教学方法,寻找最适合学生学习的方法进行教学就可以得到教学上显著的成果。数学教学主要就是教会学生解题方法,然后根据解题方法面对不同题型时都可以进行解答,而不是固守教师教的原封不动的数学公式一题一解,不会一题多解。教师要教会学生解题方法,不仅只是局限于书本知识。
一、数值变换
数值变换在以变促教中是最基础的,因为变换只是注重数字的变化,让学生对数字的变化更加敏感。数值变换不单单的是改变数字让学生学习,还要注意数值变换后学生学习的情况。
比如,第一个例子是计算题,计算加减乘除法和正负数的结合。6+(-3)×(-4)÷2,变式是6+(-3)×4÷(-2)。第二个例子是等腰三角形知道两个边求第三边,等腰三角形中一条边为4,另一条为7,求第三条边。变式是等腰三角形中一条边为4,另一条为6,求第三条边。
这两个例子第一个是运算,第二个是求边,数值不同,最后得出来的结果可能是相同的,也可能是不同的。教师一定要让同学注意在数值变换中有很多数字蒙蔽学生的双眼,但学生要仔细看问题就不会被蒙蔽。由此可见,数值变换其实是简单的运算里藏着很多大道理,可以让学生的思维变得活跃起来,也可以让学生有自己的思想,独立完成很多题目。所以,以变促教如果运用的好对学生学习数学很有帮助[1]。
期刊文章分类查询,尽在期刊图书馆
二、题设变换
题设变换在以变促教中也是很常见的一种教学方法。教师带领学生做新的题型时如果教师担心学生掌握的不是很好可以根据这个题型改变题干,让学生重新进行计算。这样可以让学生掌握新的数学理论知识。而且题设变换也可以让学生转变原来的解题思路,这样可以锻炼学生的审题能力,也可以让学生在平时做题的过程中仔细关注题目,看最后问题到底是求什么[2]。
比如,求不等式的数值大小。3y>4,-5y<6,变式是如果c>d,4c()5d,-3c()-3d。这个问题需要学生进行反复的计算,最后才会得出结果。在整个计算的过程中给出的题干很容易求出来,但变式相对来说比较复杂。由此可见,题设变换中只要某个字出现变化,那么计算的过程就会出现很大的变化,很有可能最后的结果大相径庭。这样学生在题设变换教学法中经过长时间的锻炼学生的注意力也会放在题干上,做题的态度也会变得很认真。
三、所求变换
所求变换就是在题设不换的情况下已知的条件都是一样的,但最后求的结果或者结论可以更换。这样也是以变促教中的一种方法。这种方法可以很好的检验学生对所学知识的情况是否完全掌握,因为最后的所求结论变了,在解题过程中需要运用的已知条件也不同,如果学生掌握的情况不是很好,那么变式对他们来说就会有一定难度[3]。在变式讲解的过程中学生就要用心的听课,对没掌握好的知识点要更加认真的听讲。所以,所求变换也是学生自我检查学习成果的过程。
比如,给出两个三角形,其中边的长度已经给出来,然后问题是求剩余没有已知边的长度,那么变式的问题就可以是证明这两个三角形是相似三角形。这时需要运用刚才所得边的长度证明,在整个过程中需要运用三角形边的知识,也需要运用证明三角形的知识。这样一来,可以让学生自己检查自己的学习成果。可以锻炼学生的思维,解题时步骤一定要一步一步来,不要出现错误,一步一个脚印的完成解题。
四、结束语
数学这个学科是学生整个初中阶段的重点也是难点,学生如果在数学学科中总是遇到困难,那么一定程度上会打击学生的自信心,如果处理不当也会让学生厌恶数学,所以教师一定要找到合适的方法进行教学。以变促教这种学习方法可以激发学生对数学的兴趣,教师不局限于书本,学生不局限于公式,这种方法就很适合学生,让学生对数学产生好奇心然后学好数学。以变促教这种教学方式让学生在原有的数学理论上进行拓展,然后解决不同的数学问题。对教师来说这种方法可以让教师省时省力,对学生来说可以自己减轻压力,把压力变成学习的动力。
参考文献:
[1]朱广科.精心创设原问题 自主变式促生成中考数学复习的点滴体会[J].中小学数学(初中版),2018(22):125-126.
[2]胡定华.浅谈变式教学的不同实施途径[J].数学教学通讯,2017(21)211-212.
[3]黄亚奇. 以“变”促教,引领高效教学——例析初中数学变式训练的实施策略[J]. 数学教学通讯, 2019(5).
论文作者:王波
论文发表刊物:《中国教师》2020年3月
论文发表时间:2020/4/7
标签:学生论文; 角形论文; 数学论文; 教师论文; 数值论文; 很好论文; 过程中论文; 《中国教师》2020年3月论文;