摘要:高压输电线路对于人类的生产生活具有重要的作用,随着其输电线路的增多,使得它的安全隐患也日益增加,一旦出现问题,就会导致大面积的居民断电情况,给居民的经济发展和日常生活带来诸多不便。现就高压输电线路在使用中经常出现的问题进行分析。
关键词:高压输电线路;综合防雷措施;应用
1 雷击放电过程
1.1放电原理
带电荷的雷云是造成雷击放电的主要因素。雷云是由强大的潮热气流上升到稀薄的大气层冷凝形成的。当穿越云层时,水滴被撞击分裂,其中分裂出的水沫带负电,质量较轻,上升至云层上端形成带负电的雷云。其余的水滴带正电,凝聚成雨。雷云会在地面上感应出大量的正电荷,产生强大的电场,电厂内部的电位差较大时可以达到几十兆伏。若带有强大场强的雷云继续扩大运动,当雷云覆盖区域内的空间电场强度大于常规情况下大气游离放电的临界电场强度值时,就在云间产生强烈的火花放电。最大可产生几百千安的瞬间电流,并伴随着强烈的光合热,形成闪电雷鸣。
1.2雷电压和雷电流的形成
雷电现象可看成是瞬时电流沿空气中游离的导电分子通道进入雷击高电势点。若雷电击中高压导线,将在导线上沿导线前后两路前进,并在导线中产生电压行波,示意图如图1所示。
电压行波u和电流行波i的比值为iuz/=通道的波阻抗,一般情况下,取值为300Ω。若雷电击中高压线路支撑的塔杆底部,因选用的塔脚底部接地电阻较小,在地面会出现雷电反射现象,该反射过程不会产生对地电压,此时线路塔顶电位为零。在被击线路中电压行波的运动中会产生对应的电流行波,在某一段线路上,雷击电压会产生一个正向电流,并向相反方向产生一个负向电流,对于线路来说,其承载了相应的两倍正电流和值。因此对于高压线路,此时雷击产生的入侵电压消失了,但是对应的入侵电流值却增加了1倍。由于电阻不会为零,因此会产生压降,这就使得避雷线对地产生了一个电位ut,并伴随电流行波i=ut/Z,所以测得的线路雷击电流为Im=2I。
1.3瓷绝缘子击穿原理
瓷绝缘子被雷击穿的现象为:当某段高压输电线路被雷击后,对应输电线路会生成一定强度的冲击波,并引起雷击线路附近场强值瞬间增大,导致高压线路的电介质中的带电质点积累的数量和运动的速度迅速增大;若到达瓷绝缘子对应参数的临界值时,瓷绝缘子将失去绝缘性能,在瓷绝缘子内部形成导电通路。瓷绝缘子雷电击穿包括直接击穿和间接击穿两种类型,上述过程可归为直接击穿。间接击穿是指线路虽然承受了一定程度的雷电流,并损坏了线路中某些电介质的结构特性,但并未形成足够的击穿电流产生击穿现象。且间接击穿只是降低了瓷绝缘子的绝缘值,并不会立刻引起高压线路跳闸,而是降低了设备的绝缘值,为今后埋下事故隐患。此种间接击穿更应该受到重视。
2 高压输电线路使用中出现的问题分析
2.1雷电等不可抗力的自然因素
自然中的雷电具有不可抗力的因素,具有其随机性和复杂性。高压输电线路的铺设一般选取在人烟稀少、土地资源相对较少的高空中,使得雷电等自然因素的碰撞率大大增加,如果被雷电击中,除造成停电外,还会引发巨大灾害,形成以500kV高压输电线路为中心,四周都产生带电离子,在与高空中带电云朵相互碰撞,形成电压差,人只要靠近,就会影响其生命安全。
2.2冬季覆冰等自然灾害
除了夏季的多雨高发季节容易受到损害外,冬天也极易受到温度过低、导致结冰的自然灾害。我国北方地势较高,属于温带季风气候和温带大陆性气候,冬季寒冷干燥,西北风盛行,容易形成覆冰区,冰层随着温度的降低逐渐增厚,当到达一定程度之后,输电线路不能承受起负荷,造成线路断裂倒塌的事故,严重影响了高压输电线路使用情况,由于地势险要,使得线路抢修也成为困难。
2.3线路倒塌断裂等情况的产生
冬季覆冰容易造成线路断裂倒塌的事故,除此种因素外,平时的高压输电线路倒塌的情形也时有发生。这是由于高压输电线路架设较高,且支撑点较少,导致其高压线路容易受到外界因素而影响。常见的就是春秋季节的大风影响,风力过大,使得高压输电线路左右摇晃,线路的质量进一步受到迫害,最终出现线路倒塌断裂的情况。
2.4人为影响等因素
除了自然原因会造成线路损坏以外,就是人为因素的作用了。人为因素,主要分为故意损害和无意识的破坏两种情况。好多地区的人类在建筑施工时不注意当地的地形地势,蛮横粗鲁的进行毁拆和重建,破坏了线路的使用性能;还有的人类利益熏心,偷盗电缆、电力设施等公共财物,造成高压线路架构的地基不稳,影响线路的正常使用。
3 输电防雷措施
解了输电线路防雷的影响因素后,可根据线路具体情况结合各影响因素,设计相应的防雷措施,一般的防雷措施有,设计安全输电路径、设置避雷线、降低塔杆接地电阻等方式。
3.1设计安全输电路径
过往的经验表明,输电线路遭受雷击的区域往往集中于某些特定的路段。因此设计线路架设路径时,结合当地的具体情况合理地规避雷击区即可。一般的雷击区集中在山区风口及顺风的河谷,四周为潮湿的山区,土壤电阻率有突变的地带等处。
3.2架设避雷线
架设避雷线是线路防雷的基本措施,输电线路的电压值越高,效果越好;且该方法经济性比较有优势,是线路防雷的必备措施之一。主要功能体现在防止雷电直接击中输电线路、对雷电流进行分流、降低塔顶电位,降低导线上的感应电压。
3.3降低塔杆接地电阻值
降低塔杆接地电阻值对于增加线路的防雷水平也是一种行之有效的方法,一般搭配避雷线一起使用。当输电线路被雷击之后,能够大幅度降低雷电压。输电电压在110~500kV的耐雷水平与塔杆接地电阻值的关系如下表所示,根据具体的需求选择合适的阻值即可。目前常用的减低阻值的方法有:利用降阻剂,在接地极的周围辐射降阻剂;爆破接地技术,通过爆破技术将接地装置炸裂,然后用压力机将低电阻材料压入缝隙中,将整个电阻的电导率降下来;扩大接地面积;外引接地,选择地导电率的土壤外界一个接地。
3.4加装地线区域的避雷装置,以此减少雷电破坏的程度
避雷装置的设置,需要注意高压线路的电压配置使用。电压配置等级越高,则避雷装置的防雷效果越好,同时这也是最基本的避雷防护措施,常用的方法就是避雷针的使用,可以有效防止雷电直接击中高压线路,造成电力系统的直接损坏;可以分散雷电的冲击作用,减小雷电作用下的电流串并联的作用;可以及时将导线屏蔽,避免导线的二次使用诱发危险。
3.5减小避雷线的保护角,以此确保避雷线的保护作用
工作人员可以将三相导线按照倒三角的形式进行排列,或者提高避雷线顶端的高度,以此减小避雷线的保护角。日本特高压线路的铁塔装置就是使用此种方法,将避雷线的保护角缩短,出现负值,使得雷击的频率大大降低。此种方法的运用与地形特点有不可分割的作用,要求工作人员在实际应用中必须要进行合理的设计测量才能具体实施。
4 结论
通过对雷击的机理进行研究,总结和分析了影响输电线路的各种影响因素,并给出了常用的防雷措施。架设避雷线是最常用、效果明显且经济的方式。降低接地电阻对于降低雷电压,减少冲击波的危害,并给出不同输电电压最优阻值。针对具体的情况,选择合适的防雷措施,可以大大地减小雷击带来的危害,提高输电的可靠性。
参考文献
[1]孙广慧,王俊丰,彭海涛.中压配电网架空线路差异化防雷策略研究[J].广东电力,2012(6):35-38.
[2]阮羚,谷山强,赵淳,等.鄂西三峡地区220kV线路差异化防雷技术与策略[J].高电压技术,2012(1):157-166.
[3]陈晋毅.输电线路防雷差异化设计与应用[J].科协论坛(下半月),2011(12):37-38.
[4]刘刚,唐军,季严飞,等.珠江三角洲地区雷电时空分布规律的统计研究[J].电网与清洁能源,2011(11):13-19.
论文作者:褚晓东
论文发表刊物:《电力设备》2017年第18期
论文发表时间:2017/11/7
标签:线路论文; 雷电论文; 避雷线论文; 高压论文; 防雷论文; 电压论文; 电流论文; 《电力设备》2017年第18期论文;