基于产城融合理念的职住路径选择研究
——以扬中市为例
张书龙
(扬中市自然资源和规划局,江苏 扬中 212200)
摘 要: 为研究居民社会经济属性和出行特征对于职住空间的影响,基于扬中市居民日常出行调查表,采用多项Logit模型研究分析了职住关系,探讨了职住平衡的影响因素,找出了目前小城镇产城融合发展普遍存在的问题。结果表明:居民的社会经济属性、城市发展现状与职住空间特征关系密切;城镇化空间发展方向基本以乡镇为中心向外辐射扩展,通勤流向主要集中于重点乡镇与开发区之间;产城融合理念可为小城镇职住路径选择提供可操作性的策略和实践路径。
关键词: 职住空间;产城融合;多项Logit模型;扬中市
居住与就业作为城市空间的两大组成要素,其空间配置对城市发展和居民生活具有至关重要的影响。在全面深化供给侧结构性改革背景下,许多大中型城市为了促进城市发展,提出跨越式的发展战略,而有时仅关注产业或居住等单一功能,割裂了城市和产业之间的联系,忽视了人的需求。“职住分离”的规划布局使城市建设“摊大饼”式扩张,导致职住失衡及生产生活功能服务设施不完善等外延问题[1]。众多学者在研究城镇化和工业化关系时,都间接认为产城融合是城镇化与工业化协调发展的高级阶段,当二者处于同步发展的关系模式时,能有效达到职住平衡,缓解城市病。
职住平衡理念最早可追溯到霍华德田园城市的规划思想[2]。Eliel Saarinen提出了有机疏散理论[3],L.Mumford提出了“平衡”概念[4];P.V.Subba Rao等[5]首次将神经网络模型引入出行方式选择研究中,可以考虑更多影响因素来模拟通勤行为;Golob[6]以家庭分析单位,将空间的可达性作为外生变量,利用结构方程模型,对家庭出行时间模式化;Hinan Li[7]对亚特兰大Georgia地区138户家庭的通勤者进行了从家到单位的上班出行链调查。国内学者致力于从不同角度探寻职住平衡和通勤研究的机理:有的学者利用GIS分析工具和大量调查数据,从职住平衡的角度提出优化城市空间结构和发展特征的新思路[8];有的学者以城市职住分离为重点,从通勤特征、职住空间匹配、就业可达性以及职住距离等多方面分析城市职住的空间组织特征[9];还有的学者通过职住平衡指数和统计方法分析职住平衡对通勤交通的影响,研究影响通勤效率的主要因素[10]。孙红军认为在产城融合评价指标中,应包括空间融合、人口融合和功能融合3个目标层,在空间融合中,通过测算就业点与居住点的空间距离和居民平均出行时间,来衡量产城融合度[11]。
综上,国内外学者对职住空间特征和评价的研究都偏于出行时间、交通方式、通勤满意度等特征分析,对研究区域的选择都是大城市,研究方法偏向运用数学模型进行分析,缺乏将居民的职住空间关系与产城关系联系起来进行分析的研究。因此,笔者以面积较小、城镇化发展水平高、产业集聚能力强的江苏省扬中市为例进行研究,可更好地为我国县域小城镇建设提供理论支持与实践指导,为国家小城镇实现产城融合发展提供对策参考。
1研究区及数据来源
1.1 研究区概况
扬中市位于江苏省南部扬子江中,行政隶属于镇江市,地理位置东经119°42′~119°58′,北纬32°00′~32°19′。四面环江,市境呈南北走向,总面积为331km2,陆域面积约243km2,全市现辖4个镇、1个街道(城区)、1个省级经济开发区,市人民政府驻三茅街道。境内交通便利,西北部有扬中大桥连接丹阳市、镇江市;西南部的扬中二桥连接常州市、扬中市;泰州大桥将扬中市与高港区、泰兴市连为一体。该市由太平洲、中心沙、西沙岛、雷公岛4个江岛组成。具体区位如图1所示。
图 1扬中市区位
1.2 数据来源
文中的研究数据来源于2015年扬中市统计年鉴、扬中市土地利用变更调查数据库及实地走访和问卷调查。选择扬中市6个乡镇中居民通勤流量最大的地区布设样点,对样点内的居民进行随机走访调查,获得问卷数据。最后对问卷数据进行录入整理,剔除不合格数据,并进行相关性分析。本次扬中市居民日常出行调查开展于2016年2月~3月,调查对象主要为扬中市企业职工和城镇居民,样本空间覆盖扬中市三茅街道、新坝镇、油坊镇、八桥镇和西来桥镇以及一个江苏省省级经济开发区,总人口约34万。为了研究调研区域内的居民的通勤行为特征,选取了各乡镇人流量最大的27个地点,其中企业11个,政府机构7个,商业街5个,其他4个。
2研究方法
2.1 多项Logit模型
多项Logit 模型适用于因变量为无序种类变量,适合3种及3种以上因变量情况下建模,能够得到自变量与因变量之间的关联和影响。本研究针对职住空间关系,其因变量为6种距离,符合多项Logit 建模要求。
根据随机效用理论,第n个个体选择第i种出行模式的效用Uin可以表示为:
U in =V in +ε in
(1)
用SPSS软件的multinational logistic regression模块标定居民职住空间关系模型。职住距离分为小于1、1~2、2~3、3~4、4~5、大于5共6类。解释变量为居民社会经济属性和出行特征,各个解释变量的分类和取值见表3。
当Vin与其中包含的解释变量之间呈线性关系时,可以表示为:
(2)
式中:K为解释变量个数;θ 为参数矩阵;θk为第k个变量所对应的参数;xink为第n个个体选择第i种活动模式的第k个特性变量。
假设效用函数中随机项服从二重指数分布,可以得到第n个个体选择i种活动模式的概率,即
(3)
在拥有的交通工具类别中,76.2%的家庭拥有电动车,55.3%拥有私家车,36.4%拥有自行车,20.7%拥有摩托车。
2.2 研究步骤
在扬中市的6个乡镇进行居民出勤行为调查,每个乡镇选择规模较大、发展较好的企业2个~3个,并选择部分事业单位和人流量较大的商服区域进行问卷调查,平衡被访对象的随机性。调查问卷见附录。收集整理问卷,采用EpiData软件录入,并用SPSS软件进行样本的描述性数据分析、特征相关性分析和多项Logit模型分析。
3研究结果与分析
3.1 样本特征描述性统计分析
在家到单位距离中,大于5km的占1/3,大部分人在5km以内。出行距离的远近同样影响着出行时间与方式,出行时间在半个小时左右的样本的占比最高,同样也是因为小城镇范围内就业职住距离的选择也影响周边居民的就业选择。
Willis(1996)将“任务型教学法”分为三个阶段:阶段一为前任务(pre-task)。教师引入任务,呈现完成任务所需的知识,介绍任务的要求和实施的步骤;阶段二为任务环(task cycle)。在这个阶段,教师应放手让学生去执行任务,并鼓励学生相互合作,然后向全班汇报任务完成情况;阶段三为后任务(post-task)。此阶段的重点是语言点,包括分析和操练两部分。先由学生分析并评价其他组任务的完成情况,然后在教师的指导下练习语言重点和难点。
表 1调查样点统计
在户主接受的教育程度方面,学历为大学和大专的人数最多,占59.9%;其次高中或中专,占26.8%;初中及以下占12.3%;研究生的人数所最少,占1.1%。
关于被调查者家庭构成,三代以上同住和一家三口家庭模式人数最多,各占38.0%和43.5%,其次为夫妻同住,占15.0%,最少为单身独住,占3.5%。大部分家庭都需要考虑孩子上学等因素,这对职住空间关系有一定的影响。
关于月收入,2 000元~5 000元的人群最多,占80.9%;其次是2 000元以下和5 000元~8 000元的人群,占9.6%和7.6%,8 000元以上最少,占1.9%。大部分人工资水平处于中游水平,收入符合收入金字塔结构。
从“造语益工,了无斧凿之痕”、“使事亦精”、“啄句之妙”的评语可见,李仁老对苏轼和黄庭坚作诗用事是赞赏的。徐居正《东人诗话》说:
出行时间方面,文中的样本出行时间主要是在上下班高峰期,调查样本中上班出行高峰期为7点~8点间,占比68.1%,其次为8点~9点,占比18.4%。调查样本中下班时间高峰期为17点~18点,占比为79.6%。另外,由于工作的要求和家庭情况,一部分居民需要倒班或者轮班造成一日内多次通勤往返,职住距离小的样本日平均通勤次数为两次,而职住距离大的样本均是每日通勤往返一次。部分家庭结构为三口之家的通勤次数也是两次,原因可能与家庭小孩需要照顾,导致夫妻双方只有一人工作。
式中:Vjn是第n个个体选择第i种出行模式效用函数中固定项;xjnk为第n个个体选择第j种活动模式的第k个特性变量。将式(4)变形,并运用极大似然估计法及牛顿-拉普松求解,便可估计模型中的参数θ1,θ2,…,θk[12]。
2.加强新知识、新理论的教育,提高领导干部的创新能力。加强新知识、新理论的培训教育,以“知识更新、技能增强、素质提高”为核心,实施以“新理论、新技能、新信息、新知识”为主要内容的继续教育工程,不断提高领导干部的创新意识和创新能力,准确把握发展形势,善于抢抓机遇和开拓创新,以创新谋求发展,以创新提高领导水平,以创新提高执政能力。
3.1.1 社会经济属性分析。本次调研有效问卷共1 125份,其中被访者男性占52.4%;女性占47.6%。本次调研户主的年龄绝大部分在16周岁~45周岁之间,其次是46周岁~60周岁之间,分别占85.1%和12.9%。60周岁以上的人占2.0%。
以LSTM为模型,通过模型网络层数和参数选择的方法,以农科院温室大棚的西红柿数据为样本得到训练模型,该模型具有较强的预测和泛化能力,在实际应用中有一定的参考价值,为实现大棚的智能控制提供了理论依据。基于目前的工作,后续可开展进一步的研究,将LSTM温室大棚的环境变量预测模型与温室大棚控制系统相结合,实现大棚的整体智能控制。
3.1.2 职住属性分析。在选择上班出行方式上,选择电动车和私家车的人最多,占36.4%和31.7%,余下分别是单位班车(19.8%)、公交车(11.3%)、步行(8.6%)、自行车(6.2%)、摩托车(4.5%)和其他(1.2%)。扬中市是县域范围的小城镇,之所以电动车、私家车的出行方式占比较高,一是小城镇的道路交通欠发达,没有轨道交通,且非机动车的出行成本较低,因此非机动车的出行效率更高;二是与扬中市经济条件相对较好有关,特别是因征地拆迁手中有余钱的家庭中,年轻人购买私家车的不在少数,私家车越来越普及,占比也不低。
对于计划停电、欠费停电这两类停电事件,可以直接根据拓扑来判断停电范围,不需要进行额外的故障研判分析。本文主要针对客户报修、线路跳闸、配变停电这3类停电事件,设计了基于多源信息关联的停电故障研判搜索方法。
表 2上班出行方式与职住距离的相关性分析结果
注:**. 在 .01 水平(双侧)上显著相关。
被调查者中,企业工作人员(53.8%)、机关事业单位(16.9%)、企业管理者(11.9%)三种人群构成本次调查的主体人员。采用上述3种职业与出行空间距离进行相关性分析,以确定不同类型职业是否影响职住空间关系。
3.2 模型结果与分析
3.2.1 多项Logit模型结果分析。在建立分析模型之前,特别是特征变量较多时,需要对代入模型的自变量进行筛选,因为不是所有的自变量都对职住空间关系产生影响,如果对因变量结果影响小的自变量被代入方程分析,很可能会影响其他变量在模型中的正确标定,所以进行自变量的初步筛选尤为重要。为了合理选择Logit模型的特性变量,对影响职住空间的各因素首先进行相关性分析。选取上班出行方式中的电动车、私家车、单位班车、公交车与职住距离进行相关性分析。结果见表2。
由于出行方式私家车与职住距离的相关性最强,且在置信度0.01水平上显著相关,因此将私家车选作出行方式的特征变量,其值定义为1,其余出行方为0。
式中:Vin为第n个个体选择第i种职住关系的效用函数中的固定项;εin为第n个个体选择第i种职住关系效用函数中的随机项。
根据运动方程,并考虑到弹道系数的未知性,把弹道系数扩展到状态变量中得到六维状态变量Xk=[x vx ax y vy k]T;考虑到不可能获得目标精确模型而引入了过程噪声向量,并把横向加速度的导数和弹道系数的导数都建模成零均值高斯白噪声,则扩展后的过程噪声向量为wk=[wx wvx wax wy wvy wk]T,则系统模型的状态方程可以描述如下:
根据数据粒度的细化标准,细化程度越高,粒度越小;反之,细化程度越低,粒度越大.在并行计算中,需按照并行条件对程序进行划分,得到大小不同的并行等价粒子.在一些情况下,使用较粗的粒度可以完成计算,但在某些情况必须将粒度细化后[10]才能继续执行.粒度思想的引入可以缩小聚类的数据规模,有效地提高聚类算法的执行效率.然而,仅仅基于并行等价粒子来划分程序是不均匀也不合理的,且随着计算粒度的细化,总的通信量将增大,导致较大的开销. 因此,如何科学合理地确定粒度大小来划分数据集,成为当前研究的重要问题.
表 3解释变量分类及取值
SPSS在运行时通过建立0-1变量,将J类多变量设置为J-1个二值哑变量,并自动将各类变量中的最后一类作为参考类别。建模结果见表4。
由表4可知职住空间关系与社会经济属性和出行特征的影响关系如下:①男性在职住距离3km以内的标定值为-2.162、-2.012、-1.632,是负值,说明男性在离家3km工作的概率比女性低,女性为了兼顾事业和家庭,大都选择离家较近的工作地,符合现实情况。②职业变量中,机关事业单位、企业管理者、企业工作者在<4km职住距离的标定结果为负值,>4km的为正值,说明这些人群往往去离家4公里以外的企业、单位工作。这是由于大部分企业、机关基本都分布在位于市中心的三茅镇,还有部分企业靠近新坝区。扬中市的住宅区集中在三茅以及分散在各乡镇,企业附近的居住用地数量有限,不得不吸引住得较远的员工以满足劳动力需求,增加了通勤成本和通勤时间,导致“产—城”脱节。③月收入变量中,月收入<5 000元的在1km以内的标定值为正值,3 000元~8 000元在2km~3km的标定值为正值,表明月收入在平均水平的人更倾向于离家近的工作,也有人会为了更高的收入而选择离家较远的工作地工作。④出行方式变量中,不用私家车出行的职住距离在3km内,不用单位班车出行的职住距离在4km内,不用电动车的在2km~4km为负值,即使用电动车出行的人,他们的职住距离往往在2km~4km,表明如果有私家车或者单位提供班车,人们会愿意去离家远的企业单位工作,反之亦然。
表 4建模结果
注:以>5km为参考类别;空白表示结果不显著。
3.2.2 通勤矩阵分析。根据样本数据建立各乡镇的通勤流向矩阵,具体结果见表5。
式中,是S的估计向量,其中l=L-BX0,X0是X的近似值,是X0的改正向量。在误差方程的基础上附加最优化准则:
图 2扬中市县域范围内通勤距离
根据表5可看出:①扬中市内部通勤比例大,有60%的居民能够就地工作,相隔一个镇居住和工作的占26.6%,相隔两个镇的占4.6%。从数据上可以看出,绝大部分居民能够缩短居住-就业距离。这也说明由于扬中市的单中心结构,就业机会和居住地密集分布在中心城区三茅镇,导致中心城区道路在上下班高峰期变得非常拥堵。②通勤出行在三茅镇和新坝镇的占比较高,一是因为三茅镇是扬中市市政府驻地,新坝镇是扬中市工业重镇,是全国电力电气产业之乡,且这两个乡镇城镇化程度较高,相隔较近,在产业发展和城镇发展中相互影响,也影响着这两个乡镇的居民的就业选择;二是经济开发区也与三茅镇相邻,且已经形成国家重点的经济开发园区,产业发展势头较猛,但园区内的基础设施和生产和生活服务水平还有待提高,园区内的员工大部分来自周边的乡镇,也影响着这两个乡镇的通勤流向。③油坊镇在沿江地区已经有一定规模的工业园区,其与八桥镇相邻,因此这两个乡镇间的通勤流量相对较高。而西来桥是独立的岛屿,因此该镇的居民基本上是就地择业,其向外乡镇就业选择的样本很少。
表 5通勤流向矩阵
4结束语
笔者基于扬中市居民出行情况调查问卷和2015年扬中市统计年鉴,采用SPSS数据分析方法分析了小城镇居民的社会经济属性与职住空间关系,结合扬中市发展现状比较不同出行方式、时间、距离、流向的特征差异,得出结论如下:①扬中市居民的社会经济属性和出行方式对职住空间关系的影响与社会实际情况基本一致。由于扬中市农村地区道路交通相对欠发达以及私家车的普及,电动车和私家车往往作为出行首要考虑对象,人们也愿意去离家远的地点工作。政府应在交通管理和安全防范方面做好预案措施,避免交通拥堵,减少交通事故。②扬中市面积较小,大部分居民能够当地就业。企业大都分布在三茅镇、新坝高新技术园区和经济开发区,其中新坝镇和开发区是扬中市产业发展较快速的乡镇,而三茅镇是其市中心所在地,人口较集中,城镇化水平较高,因此三茅镇流向这两个乡镇工作的居民较多。同时通勤流向的特征差异性也反映了乡镇发展过程中的产城融合不匹配,特别是新坝镇和开发区的基础设施服务水平,城镇化建设水平与居民生活需求还存在着距离。政府应提前做好周边配套设施规划和商铺招商计划,促进城镇可持续性发展。③根据职业类型对职住空间关系影响的研究结果,政府相关部门需要充分发挥自身在第一产业的优势,积极引进第二产业,大力发展第三产业,因地制宜,合理规划产业布局。同时结合道路实际情况,健全完善城市道路建设体系,制定相应的交通管理政策,以提高城市整体的运行效率。
[参考文献]
[1] 瞿颖.基于产城融合理念的土地利用结构优化研究[D].南京:南京师范大学,2015,(3):81~86.
[2] 孟晓晨,吴静,沈凡卜.职住平衡的研究回顾及观点综述[J].城市发展研究,2009,(6):23~28.
[3] Saarinen E .The City:Its Growth, Its Decay, Its Future[M].New York: Reinhold Publi shing Corporation,1945.
[4] L.Mumford .The Urban Prospect .Harcourt, Brace , and World[M].New York,1968.
[5] P.V.Subba Rao, P.K.Sikdar,K.V.Krishna Rao S.L.Dhingra. Another insight into artificial neutral networks through behavioral analysis of access mode choice[J].Comput, Environ and Urban Systems,1998,(22):485~496.
[6] Golob T F .Structural equation modeling for travel behavior researeh[J].Transportation Research B.2003,(37):1~25.
[7] Hinan Li. Comparing women’s and men’s morning commute trip chaining in Atlanta,Georgia,by using instrumental vehicle activity data[J].Transportation research board of the national academies,2005:33~38.
[8] 胡娟,胡忆东,朱丽霞.基于“职住平衡”理念的武汉市空间发展探索[J].城市规划,2013,(8):25~32.
[9] 刘志林,张艳,柴彦威.中国大城市职住分离现象及其特征—以北京市为例[J].城市发展研究,2009,(9):110~117.
[10] 周江评,陈晓键,黄伟,等.中国中西部大城市的职住平衡与通勤效率—以西安为例[J].地理学报,2013,(10):1 316~1 330.
[11] 孙红军,李红,赵金虎.产城融合评价体系初探[J].科技创新导报,2014,(2):248~249.
[12] 李 华,徐永能.基于多项logit模型的老城区通勤出行方式选择研究[J].现代交通技术,2015,12(2):66~68.
收稿日期: 2019-05-07
中图分类号: C912.81(253)
文献标识码: A
文章编号: 1007—6921(2019)17—0005—04
标签:职住空间论文; 产城融合论文; 多项Logit模型论文; 扬中市论文; 扬中市自然资源和规划局论文;