摘要:互联网是大数据最早发挥效用的行业,淘宝、京东、亚马逊等电商企业通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。大数据也在重构很多传统行业,通过收集、整理生活中方方面面的数据,进行分析挖掘,从中获得有价值信息,并衍化出新的商业模式。本文通过分析目前大数据在智慧交通中应用的现状提出问题,并提出改善建议,为后续完善服务提供参考。
关键词:智慧交通;大数据;辅助交通;技术标准
一、引言
随着平安城市、智慧城市、工业4.0等项目和技术的推进,物联网大数据逐步成为大数据发展的新方向。对遍布大街小巷的摄像头、各类传感器和工业生产数据等新的大数据来源进行分析挖掘的物联网技术蓬勃发展。
安防行业随着高清化、智能化、网络化、数字化的要求,数据量也迅速增加,早在几年前就已踏入大数据的门槛。安防领域的“大数据”一般具有几个特点:首先,数据量巨大,一个地级市30天的视频录像数据就已经是PB级;其次,区别于传统的数据结构,安防领域的数据结构比较复杂,超过 80% 都是非结构化数据,比如智慧型平安城市建设中的视频监控数据、卡口的抓拍照片、智能分析输出的特征数据等;再次,数据更新快,视频监控每秒钟都在进行;最后,这些更个性化的数据在存储后被要求能随机访问,这就要求新的物联网大数据系统更加快捷地处理数据,更具智能地保存和管理数据。
二、智慧公共交通概念与意义
智能公交的调度技术已经在绝大多数城市铺展开来,目前中国各个城市都在陆续展开该项目。用大数据辅助交通规划辅助决策,就公交网络而言,传统的方式需要在投入大量人力进行调查和数据收集。而目前的一卡通,则让数据更为全面的展现在决策人员面前,流量数据全部可以精确掌握,同时再利用上车辆拥堵时间,拥堵路段的大数据分析后,公交车的线路调整,增加与减少换乘站的决策就会更加有依据。对驾驶员评估,交通部与百度技术结合后将通过驾驶员的出行习惯,从路线到行为,为该驾驶员提供一套评估,而此人的评估会被送往交通管理部门以及运输企业等地方,让用人的参考数据更多。并且这些评估也可以为个人提供安全参考意见。预测群体出行行为,目前百度地图已经做到了可以提前两周预测某个城市的人数大概规模,而将这一成熟的预测算法用于交通后,结合交通部的其他大数据,便可以预测出群体出行的态势,对其可能出行的时间,出行路线,出行方式等等进行预测,从而为城市车辆调度提供决策帮助。
三、目前智慧交通大数据应用的现状及问题
近年来,随着经济的快速发展,机动车持有量迅速增加,交通管理现状和需求的矛盾进一步加剧。在此情况下,如何利用先进的科技手段提高交通管理水平,抑制交通事故发生,是当前交通管理部门亟待解决的问题。
针对交通管理部门的需求以及我国的道路特点,可通过整合图像处理、模式识别等技术,实现对监控路段的机动车道、非机动车道进行全天候实时监控和数据采集。前端卡口处理系统对所拍摄的图像进行分析获取号牌号码、号牌颜色、车身颜色、车标、车辆子品牌等数据,并将获取到的车辆信息连同车辆的通过时间、地点、行驶方向等信息通过计算机网络传输到卡口系统控制中心的数据库中进行数据存储、查询、比对等处理,当发现肇事逃逸、违规或可疑车辆时,系统会自动向拦截系统及相关人员发出告警信号,为交通违章查纠、交通事故逃逸、盗抢机动车辆等案件的及时侦破提供重要的信息和证据。同时,随着全城Smart系统的建设,新型的Smart IPC监控前端也将成为一个卡口系统,这使得城市卡口系统更加严密,能够获取到更多的过车数据,能更准确地描绘出车辆动态信息。
前端卡口系统还能及时准确地记录经过卡口的目标信息,随时掌握出入辖区的车辆流量状态,为交通诱导提供重要的参考数据。为了解决海量过车数据分析的挑战,智能交通要转变思路,积极尝试使用大数据技术来解决智能交通数据分析和挖掘问题。
3.1行业标准不统一
国内由于各个地区的经济发展不平衡,在实施智慧交通系统项目时,国家并没有统一的行业标准,所以造成许多地区的智慧交通系统相对独立,衔接和配合度不强。在智慧交通中大数据的应用需要依靠前端传感器进行数据采集,由于铺设的前端传感器来自于不同的生产企业,这些行业并没有统一的接口标准,这就造成即使同一个城市的不同系统也很难进行衔接和配合。在智慧交通的大数据应用中,数据采集是非常重要的环节,由于不统一的标准会严重加大交通数据获取难度,从而妨碍交通流的分析与预测。
3.2 难以确保智慧交通系统基础设施的稳定性与可靠性
智慧交通系统的整合度和复杂度越来越高,然而其健壮性却没有随之提高,因此系统整体的信息安全风险随之增大。
期刊文章分类查询,尽在期刊图书馆智慧交通系统往往需要大量的服务器和前端设备,包括信号控制、交通流量采集、交通诱导、电子警察、卡口等子系统,数据要和上级交通管理平台、下级交通管理子平台、公安业务集成平台等系统相连。系统具有流程复杂、业务系统众多、客户端分散等一系列特点。数据中心需要竭尽全力保证业务系统的正常运行。但是随着系统规模不断扩大,前端设备点位增加,设备故障点也呈几何级数增长,管理人员必须保证这些设备正常运行。在数据传输过程中,智慧交通系统中硬件设备因功能滞后或老化而导致传输速率下降以及网络延迟,这些都可能引起数据泄露以及丢失,严重影响大数据安全。
3.3难以确保数据源的质量
数据的质量主要是指数据的真实性或可信度,具体可以分为数据出处和数据失真两个层面。智慧交通应用的数据主要来自于系统中的传感器和监控等设备收集的数据,大数据中心需要高质量的数据源,而目前设备长时间运行的性能得不到保证,数据质量不高限制了智慧交通业务高水平的扩展应用。现代化的交通诱导和交通信号控制需要实时准确的交通流量数据以供进行交通状态判断以及短时交通预测使用。而由于目前系统健壮性不足,难以自行判断数据质量,从而使得交通诱导和信号控制系统不能发挥预期效用,最后影响了整体智慧交通系统的投资价值。
3.4增加隐私泄露风险
巨量的交通数据包含了个人的一些敏感信息。这些数据集中的存储增加了泄露的风险。一旦遭到非法使用,这将引起重大后果。无论从道德层面还是法律层面来看,都将对许多牵涉的用户造成影响。另外,由于数据量较大,对敏感数据的所有权和使用权并没有界定的明确标准,许多基于大数据的分析并未考虑其中涉及的个人隐私安全问题。
四、未来智慧交通大数据应用趋势
交通系统是庞大而复杂的系统,且覆盖范围非常广,各个交通平台衔接度不够。为了解决大数据应用在智慧交通中的行业不统一问题,首先国家应该推出交通平台的标准化措施,规范每个交通平台的统一化布局,包括交通系统物理层的每一个硬件设施的标准化接口以及交通系统软件层的每一个信息系统的标准化接口,实现各个平台从硬件到软件的互联性和兼容性,进一步推动交通信息化体系综合化和立体化。这样才可以为智慧交通中的大数据应用提供资源共享综合平台。此外,在实现跨部门、跨地区的交通互联共享平台的基础上,我们应该进一步规范交通系统的数据标准化,构建数据标准化体系,实现综合交通平台的数据存储。
基础设施对交通大数据的信息安全的影响不容忽视。基础设施作为智慧交通系统的物理层结构基础,一旦发生损坏或者出现问题,将很容易增加信息泄露或丢失的风险。因此,智慧交通中的基础设施建设至关重要,应该加强交通大数据应用基础设施建设。加强交通大数据应用基础设施建设主要包括:及时对前端硬件设备进行更新和维护,应对智慧交通系统中的传输信息的网络线路以及传感器和监控等硬件设备进行定期的查验、维护和更新,严防因为基础设施的损坏或者老化等问题而造成信息数据的泄露或丢失;为了应对突发事件,智慧交通系统应该制定相对应的应急措施,以便当突发事件发生时,智慧交通系统能够保证继续安全和运行,从而确保信息数据的安全有效。
大数据技术上有一个普遍观点认为数据可以说明一切,数据自身就是事实。大数据的核心价值在于通过对数据的分析挖掘,提炼价值信息并提供预测以及决策。大数据应用价值是建立在真实可靠的数据基础上的,一旦系统采集的数据本身存在错误,那么经过分析挖掘的预测以及决策非但不存在价值,而且会因为错误的决策进而造成损失与危害。因此,智慧交
通系统数据采集时,必须通过严格的监控措施以及测试手段确保数据的真实性和可靠性。从数据源头开始把关,一旦发现虚假或恶意数据便及时剔除,同时可以利用稳健统计以及对抗式机器学习等方法减轻数据恶意插入的后果。此外,在智慧交通系统的数据采集过程中,为确保传输过程中数据不失真,应该尽可能减少人为影响和干预。
五、结语
大数据在智慧交通中的应用从根本上缓解交通系统面临的压力问题的同时,也为智慧交通带来了挑战。面对这些挑战,需要各方面的综合作用,以加强交通平台资源整合,推进数据标准化为目标,以基础设施建设为基础,严格控制数据真实度,加强智慧交通系统中大数据管理。只有这样,智慧交通才可以为人们的出行提供更加便利、更加安全的条件。
参考文献:
[1]刘睿健,陈邦贤.信息化的“新常态”之路——2015年全国交通运输工作会议侧记[J].中国交通信息化.2015(01);
[2]马杨.专家学者聚首大连热议数字高速公路发展[J].中国交通信息化.2014(08);
[3]张鹤然.SDN在智慧交通云中的应用探讨[J].中国交通信息化.2014(07);
[4]赵冲久.以信息化智能化促进行业提质增效升级——关于交通运输信息化发展的思考[J].中国交通信息化.2014(05);
[5]李喆,王平莎,张春辉,黄宇.国内智慧交通总体架构建设模式分析[J].交通节能与环保.2014(02)。
论文作者:孙超
论文发表刊物:《基层建设》2018年第24期
论文发表时间:2018/9/12
标签:数据论文; 交通论文; 系统论文; 智慧论文; 卡口论文; 信息论文; 城市论文; 《基层建设》2018年第24期论文;