金茹
皖能马鞍山发电有限公司 243021
摘要:热控自动化装置是我国火电厂机组的重要组成部分之一,对火电厂的正常运行有着很大的影响。热控自动化保护装置随着今年来自动化控制系统的应用,相关问题也在不断地暴露出来,给电厂造成难以想象的损失,严重时甚至阻碍了电厂的生产和发展,因此,需要加强电厂热控自动化技术改造,以提高电厂热控自动化的运行效率。
关键词:电厂;热控;自动化;改造技术
1.引言
在提高电厂管理水平、确保工作效率的诸多有效对策当中,热控自动化技术的引起与应用是近年来逐渐为管理者所重视并认可的重要技术,热控自动化改造技术能够在确保电厂发电系统各个环节高效运作的同时,大幅度地提高电厂的发电能力,从而为电厂带来更多的经济利益。为了确保给建设项目提高更为充足的电能,电厂就要进一步地革新发展热控自动化改造技术,研究分析技术改造过程中的多方面要素与注意事项。
2.电厂热控自动化系统运行中存在的问题
2.1系统稳定性影响因素较多
目前,我国电力消耗量越来越多,而且电力传输距离较远,分布范围较广,信号传输中有很多中间接口,导致现代火电厂热控自动化系统的信号传输速度较慢,而且存在很大的故障离散性,因此常常出现控制逻辑混乱的现象,保护信号的耗时较长。而且,因为热控设备、电源、电缆等设备以及一些外界设备一旦出现异常,也会导致热控自动化系统的稳定性受到影响。因此相关的工作人员应高度重视设备的设计、设备安装、设备调试、设备运行、后期维护等各环节工作,确保整个系统设计的科学性、合理性、经济性,便于系统的安装、维护,能够简单的监控整个热工系统的实际工作情况。
2.2热控设备更新速度较慢,系统管理模式较为传统
目前,大多数火电厂仍然采用的是定期检修的传统管理模式,从而确保整个机组系统运行的稳定性、安全性。然而,传统的管理模式需要定期对所有设备进行全面检修,这样需要投入大量的物力、人力,不符合经济性的原则。而且,一些电器元件在检修中出现故障,这样会在很大程度上威胁机组的正常运行,严重的话可能会造成机组非停事故。
3.电厂热控自动化改造技术
3.1实现火电厂单元控制机组的智能化改造
优化单元控制机组的DCS,有利于提高单元控制机组的智能化、响应性,而且DCS智能化程度、灵敏度越高,整个系统的监控能力也就会越强。
期刊文章分类查询,尽在期刊图书馆在当前计算机技术、电子技术不断创新与发展的时代背景下,传统落后的自动控制设备逐渐被高智能、现代化的分散控制系统取代。在现代火电厂现场热控自动化系统中,可以采用DEH控制系统以及新华DCS控制系统。
3.2对自动控制过程控制软件进行优化改造
设置自动化控制程序模块的过程中,应该对系统控制范围以及控制指标进行优化,使整个系统的抗干扰能力提高。而且,应该注意自动控制过程软件的优化设计,提高整个系统的过程控制处理能力,在每一个过程控制中能够提供显示软件、过程监视软件、控制算法软件、信息检索软件、报表打印软件、控制程序软件等服务,能够最大限度的满足电厂现场监控的应用需求。
3.3提高辅助控制系统的应用率
应加大对火电厂自动控制系统相关管理人员的专业知识教育以及业务培训,丰富他们的专业管理知识以及系统控制能力,充分发挥辅助控制系统的作用,不仅应用于主机控制系统中,也应该在辅助生产车间内应用。由于每一个车间的应用设备存在一定差异,配套的辅助控制系统也存在一定差异,因此对应接口通信协议自然会有所区别,因此应做好物理接口和设备通信协议之间的关系转换、数据转换,确保整个控制系统的正常、有效运行。
3.4 合理强化APS 技术,注重设备维护
APS技术也即是指火电厂机组的顺序控制系统,是实现火电厂自动化控制的重要基础条件,因此应提高相关操作人员的专业技术水平,要求严格按照规定操作执行,避免出现失误,尽可能将机组停止、启动的时间减少,提高热控自动化系统的反应能力以及整体性能。其次,应重视热控设备运行、维护工作,有必要建立设备故障、检修、更换台账,详细记录每一次设备故障原因,检修的过程以及设备损坏更换的原因,确保热控设备健康、有效运运行。
3.5对热控接地系统的抗干扰水平和稳定性进行提高
热控系统的接地系统很容易受到周围环境的干扰。一旦周围环境发生变化,很容易造成测量精确性下降、控制系统误发信号或者设备出现临时故障,往往造成整个发电机组的跳闸。因此,提升接地系统的稳定性是提升热控系统稳定性的关键。接地系统稳定性的提升可以对电缆屏蔽层和机组振动信号柜进行防范,避免出现接地连接。在进行整套机组启动时,往往由于振动信号发生跳变,保护动作定值低于振动信号导致风机跳闸和主燃料跳闸。接地异常会造成机组事故,影响机组运行的稳定。然而如何提高接地的抗干扰能力,仍然是一个技术性难题。在设计安装的过程中,要做好相应的抗干扰措施,例如强弱电分离、接地和屏蔽等措施。为了应对抗干扰检修困难的情况,要对热控系统的所处环境以及输入输出设备进行控制,对现场的具体情况进行排查,例如对干扰途径进行阻断、对干扰源进行排除等。对抗干扰技术要进行综合性利用,提高排除干扰源和干扰途径的能力,以此来提高热控系统接地的稳定性和可靠性。
3.6优化热控系统的逻辑
优化热控系统的逻辑主要有以下四个方面:
(1)以错容逻辑来进行热控新机组的运行检修,并将错容逻辑应用到新机组逻辑的设计中去。从控制逻辑的角度,对热控系统中的各种元器件、部件和设备进行合理的优化和改进。错容逻辑作为一种先进的设计技术,能够有效地对逻辑产生的误动作进行控制和减少,以此来提高热控系统的逻辑。
(2)电厂要组织专门人员论证热控系统中的连锁信号取样点,对其稳定性进行论证,直至确定连锁信号取样点的可靠。电厂要采取专门措施,梳理并分析热控系统设备的定值、运行逻辑条件和设备硬件等关键因素的稳定性,对其稳定性做出评价。
(3)优化热控保护逻辑,对系统的稳定性进行升级。这就需要对热控系统的延时时间、变化速率保护等进行科学的设计。要做到坏值信号剔除功能的提升可以将量程减少,以此来发挥其对故障进行诊断的基本功能。为了减少或者避免热电阻、干扰信号和接线松动而引起的信号波动以及进一步导致的热控系统故障,可以设计相应的报警逻辑程序,或者切除保护联锁信号的坏值。
(4)以专项研究的方式,来研究对仪表的周期进行科学检验的方法,以及如何对热控设备的稳定性种类进行测量。这就需要电厂相关人员对仪表的统计台账进行客观的分析和统计,包括仪表合格率、设备的损坏情况、设备的更换以及故障的原因等,对于设备的稳定性、厂家的售后跟踪情况以及设备的使用场所都要进行关注和跟进。要对热控测量仪表的校验周期进行编制以及对设备进行选型和管理,就必须以热控设备稳定性分类作为依据。
4.结束语:
热控系统对于整个发电机组的运行有着重要的影响作用,只有对热控系统的可靠性进行提高,才能够有效地提高整个发电厂的工作效率。特别是发电厂设备的智能化和自动化程度越来越高的时代背景下,更要重视热控系统的可靠性,以免造成事故。这就需要从热控的设备控制、测量、逻辑稳定性等一系列环节入手,不断提高热控设备的安全性和可靠性。
参考文献:
[1]俞刚,胡伯勇,金冯梁.基于本质安全的大型火电机组热控设备可靠性管理[J].电力技术,2012(38).
[2]褚晓锐,李翔.基于可靠性的微机保护装置现场运行的抗干扰措施探讨[J].四川水力发电,2013(67).
[3]吴金宝,赵燕平,穆建波.热控系统可靠性分析与对策[J].山东电力技术,2012(21).
论文作者:金茹
论文发表刊物:《基层建设》2015年5期供稿
论文发表时间:2015/9/30
标签:设备论文; 系统论文; 电厂论文; 机组论文; 稳定性论文; 火电厂论文; 逻辑论文; 《基层建设》2015年5期供稿论文;