水力发电机组振动产生的原因及处理方法论文_ 郭晓峰

水力发电机组振动产生的原因及处理方法论文_ 郭晓峰

[摘要]水力发电机组振动故障会严重破坏水电站的稳定运行。本文介绍了水力发电机组振动产生的主要危害,探讨了电气原因、水力因素及机械原因造成的水力发电机组振动及处理方法。

[关键词]水力发电机组;主要危害;振动产生的原因;处理方法

水轮发电机组作为水电站的核心组成部分,它的安全稳定运行关乎整个水电站的经济效益和运行效益。水力发电机组产生振动主要有机械振动、水力振动和电磁振动,不同的振动故障产生的原因也不尽相同。因此,科学掌握水力发电机组振动产生的原因,提高机组运行效率具有重要的意义。

1、水力发电机组振动产生的主要危害

水力发电机组振动产生的主要危害有以下几个方面。①尾水管中形成的涡流脉动压力会使尾水管壁产生裂缝现象,严重时会导致整体尾水设施遭到破坏。②振动会引起机组零部件金属和焊缝之间疲劳破坏区形成并扩大,其机能减弱。随着裂纹的扩大,产生裂缝,最后造成断裂而报废。③磨损程度较大、轴剧烈振动,使轴与轴瓦温度升高,容易烧坏轴瓦,发电机转子振动过大,增加滑环电刷磨损程度,造成电刷火花不断增大。④发电机组振动过大,使得发电机各连接部件产生松动,这样会使得转动部分与相对静止部分产生相对摩擦,进而可能出现扫膛而损坏机器。

2、电气原因导致的水力发电机组振动及处理方法

2.1三相负荷因素引发的振动及处理。在实际水电生产过程中,发电机组经常会出现三相负荷不对称问题,即发电机定子单向接地或者两相短路时,便会出现三相负荷不对称问题。当负荷不平衡时,三相绕组会产生负序电流,产生负序旋转磁场。一旦负序磁场正对发电机纵轴时,较小气隙会增大转子间作用力。一旦负序磁场正对发电机横轴时,较大气隙会减小转子间作用力。因此负序磁场造成定转子间作用力忽大忽小,便会造成定子机座与转子出现振动问题。针对此种问题,需要设置发电机阻尼绕组来减小负序电流,在负序旋转磁场切割转子时,电阻中安装的漏电抗很小的阻尼绕组便可以产生较大感应电流,对负序磁场进行削弱,从而减少产生的负序电流,避免出现振动问题。

2.2静态气息因素造成的振动及处理。对于水力发电机,在安装时如果定、转子不同心,或者发电机定子与转子不圆,在后期运行过程中很容易出现气隙不均匀问题。此类问题发生后会影响气隙磁场均匀性,在定子上产生相对静止单边磁拉力或者周期性交变磁拉力,并在转子上产生周期性交变性磁拉力,进而造成机组振动。想要消除此类因素影响,就需要采取措施来消除在静态气息不均匀问题,即机组安装与运行前需要准确测量发电机转子圆度,并利用垫片设置在磁极与磁轭间进行调整,同时还可以增加上机架径向支撑刚度,以及提高动态平衡精度。

3、水力因素引起的水力发电机组振动及处理方法

3.1水力因素引起的振动原因。①卡门涡列:围绕着物体的恒流通过时,在出口的两侧边缘出现了漩涡,形成了有规则交错排列、向相反方向旋转的旋涡,从而相互吸引、相互干扰,形成了非线形的涡列,通常被称为卡门涡列。当卡门涡列冲击频率和旋转物体叶片固有频率比较接近的时候,叶片的固有频率会产生共振,并带有强烈且频率单一的噪声以及金属共振的声音。②空腔汽蚀:水轮机有水流通过的时候,流速、流向受到流道的影响发生变化,在流速增加或脱流部位压力减少到汽化压力的时候,水流中会出现汽泡,气泡在进入高压区之后会溃灭,从而导致汽浊出现。空腔汽蚀是在流道中由于漩涡带引起负压、脱流而导致压力交变造成的。因空腔汽蚀造成机组的推力轴承和顶盖产生剧烈的垂直振动,相较于横向振动,垂直振动的危害更大。③尾管的低频率水压脉冲:水轮机在非设计工况条件下运行的时候,由于转轮受到出口处的脱流旋涡和旋转水流以及汽蚀等影响,在尾水管内常常会引起水压脉动,特别是在尾水管内出现大型涡带之后,涡带以近似固定的频率在管内转动,从而导致低频压力脉动。当水流在管道中流动时,压力脉动会激起尾管壁、转子、蜗壳、导水机构和压力管的剧烈振动。

期刊文章分类查询,尽在期刊图书馆④水力不平衡:具有动能和位能的水流是由蜗壳的作用而形成的环流,它是经过均匀分布的固定以及活动导叶片作用到旋转轮上,旋转轮被激活而旋转。因为加工、安装误差,导水叶叶片、流量通道的形状大小差异比较大的时候,作用旋转轮的水流在失去轴对称的情况下就会出现不平衡横向力,从而导致转轮振动,当无负载和低负荷运行的时候,振动比较强烈。

3.2处理方法。对于水力因素引起的强烈振动,可以采取下列措施处理:①对止漏间隙不当造成的振动的消除方法,可以通过调整间隙使其均匀的方法。实践证明:适当增加外止漏环间隙,可明显减弱转轮偏心运动对背压止漏环间隙压力的影响,进而减少振动。②气浊和尾水管涡流引起机组的强烈振动,可以使用补气措施进行消振或是减振,也可以使用安装导流瓦和导流翼板等在尾水管入口处,可以减少和消除涡带引起的振动。③对于卡门涡列造成的振动,可以采取改变叶片固有频率或卡门涡列频率的方法,也可以改型或削薄叶片出水边,也就是说,抵消、削弱正反双方侧面构成的交变漩涡,避免造成共振。

4、机械原因造成的水力发电机组振动及处理方法

4.1转动部件因素引起的振动及处理。转动部件故障是影响水轮发电机运行稳定性的常见原因,其主要包括静态与动态两类。其中动态质量不平衡即发电机组在运行一段时间后,受各项因素影响各部件松动或者位移,造成机组旋转质量平衡性降低。在加上部分机组转速高并且转子较长,在运行过程中也会出现不平衡力偶问题。通过对此方面因素的分析,需要重点做好转动部件的选择与安装,保证各细节实施效率,并采取可靠措施来防止磁轭运行时产生的不均匀径向外移。另外,还可以选择用检测仪器与平衡重配置软件,对各部件进行现场平衡试验,对不平衡部位进行处理。

4.2机组支撑因素导致的振动及处理。如果发电机组支撑结构静态刚度较低,这样在生产运行过程中很容易受外力影响而出现较大的变形。同样如果其动态刚度较低,在受到力矩或者不平衡力影响时,就会导致机组设备产生较大振动。就我国水电建设生产现状来看,存在因为机座、负荷机架以及磁轭等部件刚度不足,导致机组固有频率过低而出现运行振动的问题。并且当灯泡贯流式水轮发电机组支撑结构或者轴系刚度较低时,情况严重的甚至还会出现发电机转子扫膛事故,降低生产安全性。因此在面对此类问题时,必须要保证机组支撑结构具有足够的静、动态刚度,满足机组稳定运行要求,避免为降低投资成本而减小安全裕度。

4.3机械轴线因素引发的振动及处理。机械轴线不正或者对中不良会加剧发电机组振动加剧,降低其运行稳定性,在生产过程中比较常见,需要及时采取措施进行处理。发电机上端轴与转子中心体不同心、发电机轴与转子中心体不同心以及水轮机轴与发电机轴的轴心不正等,均会导致机组出现振动问题。此时,要求加强对机组各部位的巡检检测技术管理,在安装阶段需要严格按照专业规范来进行,确保所有细节均满足要求,提高设备选择与安装效率。

5、结束语

水力发电机组在运行的过程当中,一旦出现较大振动,会影响水电站的正常运行,降低能源的利用率。在实际工作中,水电站中的相关工作人员要选择合理的动态评价指标,根据机组运行特点,熟练掌握运行维护技巧,加强机组全面评价体系,针对水力发电机组运行过程中经常出现的问题,采取有效的解决对策,优化方案,规范操作,从而保证水轮机与发电机的可靠运行。

参考文献

[1]周玉安.水力发电机组运行中振动的原因分析[J].企业技术开发,2017(35)

[2]刘倍倍.水轮机发电机的振动原因及处理研究[J].居舍,2017(36)

作者简介

郭晓峰,男,汉族,本科学历,1973年出生,工程师,现从事水电厂运行维护技术管理工作。

论文作者: 郭晓峰

论文发表刊物:《中国电业》2019年20期

论文发表时间:2020/3/10

标签:;  ;  ;  ;  ;  ;  ;  ;  

水力发电机组振动产生的原因及处理方法论文_ 郭晓峰
下载Doc文档

猜你喜欢