地铁车地无线通信实施方案探讨论文_董招

地铁车地无线通信实施方案探讨论文_董招

中建五局安装工程有限公司 湖南省 410000

摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。本文通过分析频段2.4G传输时钟同步车地无线通信方案、频段1.8G近远端机同步车地无线通信方案和频段5.8G-GSU同步车地无线通信方案,提出更适合的频段5.8G分组传输网时钟同步车地无线通信方案,以及未来车地无线通信发展的前景。

关键词:地铁通信;车地无线通信;方案

引言

车地无线通信系统是城市轨道交通的重要基础设施,是地铁安全运营所必须的信息交互系统,系统的通信质量和可靠性直接决定地铁的运营状况,与人们的出行体验息息相关,是城市进行地铁建设时需要重点考虑的问题。近些年,随着车地无线通信技术的发展,形成多种无线通信技术,如何选择合适的车地无线通信技术,满足地铁运营的需要成为设计、施工人员需要重点思考的问题。

1地铁车地无线通信概述

车地无线通信网络是乘客信息系统(简称PIS系统)主干网络的延伸,PIS系统能通过组播方式实现线路播控中心到列车的信息下发,并能实现广播和寻址功能,将特定的信息发送给指定的一列或者几列列车;视频监控系统(简称CCTV系统)也能通过该网络实现将车辆客室监视信息实时上传至中心CCTV服务器,列车驾驶室显示终端能调看对应车站站台屏蔽门侧的监控图像。车地无线网络提供的双向传输有效带宽应能满足列车与中心之间的实时双向数据传输的带宽要求,保证所传图像顺畅清晰,不出现画面中断或者跳播等现象,且系统具有QoS分级控制功能。车地无线网络确保沿轨道线安装的无线接入点和在移动列车上的移动单元之间建立稳定、安全且能避免冲突的连接。在列车高速运行时,不应丢失连接和引起画面质量降低,无线设备应遵循完善的切换机制无缝切换至最合适的接入点。

2地铁车地无线通信整体规划

2.1通信信号各自独立建设LTE单网

通信信号专业各自建设一套LTE硬件传输网络,通信专业单网承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,则由通信专业为信号专业配置冗余无线数据传输通道,以满足信号系统冗余需求。优点:该方案同样整体降低本工程LTE车地无线信息传输网络的造价,实现资源的整合和充分利用,技术上满足信号系统对车地无线数据传输的要求,节约频带资源的使用宽度。缺点:信号系统与通信系统在无线数据传输系统增加了接口,同时信号系统的冗余通道的可靠性和安全性需要由通信系统保障。

2.2通信独立建设单网,信号专业独立建设冗余双网

通信专业独立建设一套LTE硬件传输网络设备,承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,信号专业独立建设一套冗余无线数据传输网络设备。优点:该方案通信信号两个系统在无线信息传输系统上完全独立,工程安装、调试,后期的设备维护都相对独立,降低了专业之间的依赖,管理上更为便利。缺点:增加了工程建设的成本,增加了无线频带资源的使用宽度。

3地铁车地无线通信实施方案解析

3.1频段1.8G近远端机同步车地无线通信方案

该方案车地无线通信采用1.8G频段,通过地面无线发射网关+车站近端机+区间光远端发射机的组合模式,地面有线网络中心交换机通过光缆与各站地面无线网管相连,这样能保证无线发射信号的频率一致,基本不存在延时。为解决列车高速在区间行驶时,列车基站信号接收器频繁切换信号源,出现不断跟信号源通讯握手的死循环模式,导致无法正常进行通信状态。区间基站采用无线接收基站和光远端发射机,在对应列车内配置车载无线接收网关、车载无线发射网关和车载通信控制器。该方案无线接收和发射通道分开,但能很好的解决高速行驶时无线信号越区切换通信故障问题。该方案带宽仍然有限,一般为30M左右,其中控制中心设备可调看单列车6路监控图像(带宽需求在12M左右),而列车播控系统能播放直播信号(带宽需求在6M左右)。

期刊文章分类查询,尽在期刊图书馆但通过地面无线发射网关+车站近端机+区间光远端发射机的模式,控制中心能够实时调看低码流列车监控图像。该方案,区间光远端发射机一般800m左右安装一个,天线覆盖范围较远,但是为保持同步并解决信号越区切换问题,各站无线发射网关需敷设光缆与地面有线网络中心交换机相连,光缆数量非常大,施工成本较高。

3.2频段2.4G传输时钟同步网车地无线通信方案

该方案车地无线通信采用2.4G频段,轨旁基站与车载基站之间无线使用IEEE802.11n用于覆盖列车运行沿线,无线骨干连接带宽可达到15Mbps,而区间基站与车站交换机有线信息传输网之间的连接有效带宽为100Mbps。传输系统采用数字同步多业务传送平台(简称MSTP)和时钟同步网络(简称BITS),即MSTP+BITS同步传输方案。车站车地无线系统通过传输系统分配的1000M光通道传输至控制中心,关键在于该传输系统能提供严格的时钟同步功能,保证区间基站发射信号的同步,以至于列车行驶跨越无线覆盖区间时,基站发射信号保持同步。区间无线基站与无线管理交换机无线控制器模块之间通过有线网络进行互联,采用CAPWAP标准隧道协议,同时,在保证802.11安全的前提下采用集中控制分布式转发。

4城市轨道交通中常见的车地无线通信技术

4.1TRainCom-MT技术

该技术是由德国公司研发的城市轨道交通专用通信系统,能够在高速移动环境下保持良好的通信效率和质量,车地最大通信传输速度可达16Mb/s。但是,该系统受到保密性协议的限制,其系统升级和开发只能依靠德国公司实现,市场维护和选择方面相对教差,在国内中的应用相对较少。

4.2LTE无线传输技术

LTE无线传输技术是当前应用最为广泛的车地无线通信技术,是在3G的基础上发展而来的,通过对空中接入技术的改进和增强,在保有3G原有技术优势的同时,实现无线传输的低延迟、高传输速度、分组传输、向下兼容和光域覆盖。因其技术优势,LTE无线传输技术在郑州、深圳等多个城市轨道交通中有所应用。

4.34G技术的地铁专用无线通信系统的应用

为统一铁路列车调度管理,促进列车调度工作朝向规范化、标准化方向驶进,铁路部门明确要求列车调度管理人员必须加强列车调度管理的组织和指挥能力,为列车运行安全提供保障。对于地铁列车运行而言,若想确保调度管理效果,往往需要立足于地铁无线通信系统功能实行调度管理方案。一般来说,主要针对行车调度无线通信子系统、车辆段和停车场无线通信子系统以及维修调度无线通信子系统等调度管理工作而言,通过集中管控,确保地铁列车运行质量,防止安全事故。针对于此,本人主要结合相关经验,提出关于优化4G 地铁专用无线通信系统运行管理的相关建议,以供参考。首先地铁列车各级调度人员必须努力学习有关 4G 地铁专用无线通信系统运行管理的技能知识,树立安全管理意识,始终坚持实事求是原则,严格贯彻与落实各项工作内容。根据列车运行状态开展相关调度管理作业,确保列车运行安全。对于行车调度通话而言,必须满足服务质量等级QCI3,以期最大限度地加强行车调度通话之间的高效性与质量性。最后运营管理人员必须肩负起对地铁专用无线通信系统运行问题的管理重任。与此同时,调度管理人员与列车司乘人员也必须强化自身的主体责任,强化辅助管理效果。根据列车实际情况,提供合理的语音通信业务,确保列车行车安全。在无线基站、核心交换机等地铁专用无线通信系统基本设施的管理方面,必须实行定期检查工作,杜绝止运行故障问题。

结语

未来高清时代,对车地无线网络的带宽和稳定性要求更好,随着新一代传输网络的MSTP+设备和区间基站设备的应用,在不断探索和解决当前车地无线通信方案实施过程中的问题中,也将会产生新一代的车地无线通信方案。另外区间信号通信和车地无线通信都单独设置,为共享资源和降低施工成本,相关通信厂商正在考虑结合LTE-4G技术,提出将区间信号通信和车地无线通信合用一套LET系统综合承载平台。再者随着5G时代的到来,更高速率的传输模式也将会给地铁车地无线通信带来巨大的变革。

参考文献:

[1]安彬.地铁信号系统中车地无线通信传输抗干扰分析[J].科技创新与生产力,2015(12).

[2]肖清华,等.D-LTE网络规划设计与优化[M].北京:人民邮电出版社,2013.

论文作者:董招

论文发表刊物:《基层建设》2019年第17期

论文发表时间:2019/9/11

标签:;  ;  ;  ;  ;  ;  ;  ;  

地铁车地无线通信实施方案探讨论文_董招
下载Doc文档

猜你喜欢