黄创瀛 广东省陆丰市甲子中学 516538
【摘要】大部分学生认为高中阶段数学函数学习较为抽象枯燥,难以有效理解,在做题时会感觉手足无措。新课程标准对于高中数学教师提出了多元化要求,所以教师必须要深入探究函数这一教学课程进一步创新课程教学方法,使每位学生都能够有效掌握函数内容。本文在此背景下分析探究如何创新高中数学函数教学方法,并提出具体的函数教学对策,引导学生有效掌握函数学习的精髓与技巧。
【关键词】新课程标准;高中数学;函数学习;学习方法
中图分类号:G688.2文献标识码:A文章编号:ISSN1672-2051 (2020)01-264-02
引言
高中数学对于学生而言具有较大的学习难度,函数部分属于学习中的重难点,函数在高考中所占比例较大。函数与向量、几何部分知识点有较大的关联性,所以帮助学生学好函数是培养学生数学思维的重要方法。但是大部分学生认为函数概念与模型枯燥乏味,难以有效理解,并且函数部分题型较多,题型灵活多元,除非学生有效掌握函数内容,否则难以取得良好的成绩。根据这一情况,教师必须要将函数部分讲解透彻,将抽象的知识转变为简单易懂的语言,使学生真正理解并且有效掌握做题技巧,才能够提高函数教学效率与质量。
一、讲清楚函数概念
高中阶段函数与相关概念内容较多,例如奇偶性以及单调性、对称性与周期性等等。函数单调性也称之为函数的增减性,可以定性描述在一个指定区间内含数值变化与自变量变化的关系。在应由于函数的单调性,是函数在一个单调区间上的整体特性具有任意性,不能用特殊值代替。但是大部分学生并没有足够重视基础概念学习,盲目的追求解题方法,但是概念是函数学习的重要基础,要想学好函数,必须要深入理解函数概念。
教师可以从生活案例进行导入,引导学生观察图像,教师可以给出学生熟悉的函数,y等于2x,y=-2x,y等于x2的图像,以基本图形为素材,引导学生发现图像上升,下降时函数值的变化规律在此基础上推广到一般函数,得出增减函数定义,鼓励学生通过归纳判断的方法进行简单的应用,从而提高学生的概念理解能力。所以在教学过程中,教师必须要引导学生有效掌握函数图像与函数的基本性质、函数的特殊点与奇偶性和对称性等等。在课堂教学过程中,先讲清楚函数概念与各种定义选用举例方法,使学生真正了解抽象概念,在此基础上讲述解题技巧,才能够取得事半功倍的课程教学效果。
二、带领学生应用数形结合方法解题
著名数学家华罗庚先生认为:数缺形时少直观,形少数时难入微。在教学过程中,教师应当将数形进行有效融合,例如:在函数学习过程中可以借助图形的直观特点反映函数特性,能够更加清晰的体现出函数特点,所以教师引导学生在日常的函数学习过程中,有效应用数形结合思想。
例如:偶函数关于y轴对称,奇函数关于原点对称,判断某函数是否是奇偶函数时,要求学生作出函数的图像便能够一目了然答案。所以教师必须要引导学生了解函数图形,根据图形进行解题,会大大降低解题难度,并且缩短解题时间,不需要繁琐计算。所以在生活中部分问题的解答也需要融合数形结合思想,例如抛小球问题,小球在空中的轨迹可以大致看作为抛物线。抛物线建立坐标轴应用图形进行计算能够使得所求量十分的直观,易于理解,有助于学生解题。
期刊文章分类查询,尽在期刊图书馆
三、带领学生复习,逐步提高教学难度
在函数学习的过程当中,由于函数学习内容较为复杂和抽象,题型较为丰富,学生很难把握住函数学习的相关技巧。教师在混合测试题教学当中,为了更好的提升学生的理解能力,强化学生的函数知识学习主动性,就要使学生对每一个函数题的题型进行充分的理解和学习,增强学生的抽象思维,完善学生的关联意识和函数知识把握能力。
例如:若函数f(x)=(x+a)(bx+2a)(a . b为常数)是偶函数,且它的值域是(-∞,4),则函数的解析式f(x)等多少 ?教师可以讲解相关思路,把二次函数整理为一般形式,因为函数为偶函数,所以x一次项前系数为零,可以列出一个方程。通过值域可知b小于0 ,且最大值为4。通过顶点坐标公式可以列出第二个方程。两方程连立,且b小于0,就能求出ab的值。如:f(x)=(x+a)(bx+2a) =bx2+a(2+b)x+2a2 ∵f(x)是偶函数,x一次项系数为0,即a(2+b)=0,a=0或b=-2 那么f(x)=bx2+2a2。 又∵值域是(-∞,4),可知,a不能为0.则b=-2 且2a2=4 则函数解析式为f(x)=-2x2+4。通过教师循序渐进的讲解,引导学生将二次函数整理为一般式,便能够将困难迎刃而解。
教师在讲述新课时通过引导学生复习之前所学的数学内容,强化学生的基础知识掌握能力,教师还可以选取一些具有研究意义的相关题型,使学生在课堂当中逐步的学习和探索,从而增强学生的学习难度,使学生能够由浅入深的强化自身函数知识的掌握技巧。教师为了更好的帮助学生接受函数的相关知识点,减轻学生的学习压力,就要培养学生对于函数学习的主动性,所以在讲述函数知识点时要对概念性的知识进行复习和引导。教师要多与学生进行沟通了解每一个学生对于函数知识的掌握能力以及在学习方面的认知思维,使学生能够对概念性的知识进行了解。教师可以根据学习基础较差的学生进行全方面的教学培训,增强学生的基础知识掌握能力,使每一个同学都能够在教师的帮扶下掌握更多的数学知识,从而在学习当中紧跟班级的步伐。
四、将概念与题目相融合,帮助学生更好理解
在教学过程中引导学生进行实践练习,增强学生对于概念的理解以及应用能力,才能够帮助学生理清学习思路,有效掌握函数解题方法。教师也要在教学实践当中多讲解概念性的知识点布置课后作业,使学生能够在作业当中不断的掌握函数的解题思路。教师也要在教学讲解当中,确定学生是否理解自己所讲述的解题方法,在课堂当中多与学生进行互动,使学生能够了解数学的相关概念,增强学生对于概念学习的重视程度。教师也可以通过考验的策略进行解题和引导。如果教师在教学当中,只通过枯燥的方式来进行教学讲解,则很难启发学生培养学生的数学学习兴趣,所以教师要通过趣味性的教学方式,利用实践与理论相互结合的教学策略,开展教学引导工作,在教学当中教师要将概念配合例题来进行教学讲解,才能够加深学生的函数学习印象,强化学生的概念理解能力,防止学生在学习当中出现各种各样的学习问题,提升学生的数学函数学习兴趣。教师也要对于学困生进行科学的引导,耐心的指点,帮助学困生提高函数知识的学习主动性。
结束语
结合上述内容,我们能够看出高中教育在新课程改革背景下,必须要摒弃传统的灌输式教学模式,教师应当丰富课程教学方法,寻找有效的教学方式,提高函数教学效率,充分重视培养学生的创新能力与自主学习能力。函数属于高中阶段的重难点内容,教师必须要带领学生深入理解函数概念以及图形的应用解题技巧体系,电竞的增强学生的学习兴趣,提高教学难度,帮助学生有效理解概念和题目内容,从而提高学生的解题技能增强综合能力。
参考文献
[1]吴兰珍.高中数学函数教学渗透数学思想方法浅探[J].广西教育学院学报,2016(05):145-147.
[2]邱强生.探究如何创新高中数学函数教学方法[J].中国校外教育,2017(05):241-242.
[3]王金法,林伟贤.新课标下提高高中学生函数学习兴趣策略[J].高中数学,2017(08):25-28.
[4]陈文斌,王生文.探究如何创新高中数学函数教学方法[J].函数教学与发展,2016(05):142-145.
论文作者:黄创瀛
论文发表刊物:《中国教师》2020年4月
论文发表时间:2020/4/7
标签:函数论文; 学生论文; 教师论文; 概念论文; 偶函数论文; 高中数学论文; 教学方法论文; 《中国教师》2020年4月论文;