(唐山供电公司变电检修室 河北唐山)
摘要:随着计算机技术、特别是处理器的迅速发展,微机保护在电力系统中逐步得到应用。自20世纪80年代以来,微机保护经历了几个发展阶段,现在技术已日臻成熟,在我国电力系统得到广泛应用。
关键词:继电保护;常见故障;处理方法
1 继电保护对电力系统主要作用
为了构建良好的电力系统运行秩序,在设备运作期间必须要配备相应的运行保护。继电保护在电力系统出现故障时能够及时检测故障发生的因素,并判断故障的具体位置,向技术人员发送报警信号等,为故障问题的处理创造了条件。其优势体现在:
(1)安装便捷。根据市场调查数据显示,我国市场上销售的继电保护产品的内部结构都在积极优化升级。高科技的继电保护产品带来的是故障诊断的高效率,同时在电能消耗上要比其他保护装置低得多。同时,继电保护装置在安装过程中操作方便,技术人员只需安装电气图纸操作即可。
(2)性能优越。随着社会科学技术的发展,继电保护装置的这种材料属于绝缘物质,在使用过程中很难受到外界腐蚀作用的影响。在今后的各项电力设备运行技术发展阶段,继电保护装置产品的性能会变得更加优化,其“能力强”主要表现在抵制干扰、增强绝缘、防范电磁等方面。
(3)维护安全。最近几年对系统设备采取旧保护方式的设备,不仅故障发生率较高且给操作人员的安全也带来威胁。继电保护技术在数据信息安全性能的保护上作用显著,可有效避免外界因素干扰造成的装置受损等。当电力系统正常运行之后,继电保护装置可以实现有效的防范监测。
(4)检测故障。从根本上看,继电保护是在电力系统的设备或元器件出现故障之后,对系统实施报警以提醒值班人员处理。另外,还可以对控制的断路器发出跳闸程序操控指令,以及时中断各受损设备的运行,从而达到保护设备或元器件的效果,这种高性能的故障防范功能是其他设备无法实现的。
2 继电保护常见的故障分析
继电保护常见故障主要包括以下几个方面:产源故障,继电保护的装置生产属于技术性生产的范畴,其质量的好坏对于保护装置的运行有着直接的影响,如机电型、电磁型继电器零部件的精确度和材质等;整体性能不合格,晶体管保护装置中元器件的运行不协调、性能差异大、质量差,易引起装置的拒动或误动;运行故障,在设备运行过程中,因温度过高会导致继电设备的失灵,具体表现为住变动保护误动、开关拒合,而继电保护工作当中。电压瓦感器二次电压回路故障是最薄弱环节,电压互感器作为继电保护策略设备的起始点,对于二次系统证常的运行十分重要;隐形故障,相关资料显示,全世界有大约75%的大停电事故都同不正确的保护系统运作相关,继电保护的隐形故障已成为一种灾难性的电力机理,故很多文献中都对继电保护隐形故障的分析加以强调。对于一些重要输电线路,断路器故障的就地保护可以对监管所有跳闸元件加以确定,且在跳闸元件故障中,所有的远方和就地跳闸的指令才有效。
3 继电保护故障处理方法
(1)替换法。
期刊文章分类查询,尽在期刊图书馆用好的或认为正常的相同的元件代替怀疑的或认为有故障的元件,进而判断出该被替换组件的好坏,利用这个方法可以快速地缩小查找故障范围,这是处理综合自动化保护装置内部故障最常用方法。如果一些微机保护出现故障,或一些内部回路复杂的单元继电器,可以使用临近备用,或暂时处于检修的插件、继电器代替它。如替换之后故障消失,说明被替换下来的组件发生了故障,如果故障仍存在就说明故障没有发生在该组件上,要继续使用该方法进行相同的检查。
(2)短接法。所谓短接法,就是指将回路中的其中一段,或是将部分用短接线入为短接,对短接线范围内进行故障的判断,查看故障是在短接线范围内,还是在其它的地方,以此来缩小故障范围。但是这种方法有其固定的适用范围,主要用于电磁锁失灵、电流回路开路、切换继电器不动作、判断控制等转换开关的接点是否好。
(3)参照法。通过正常与非正常设备的技术参数进行比较,进而从不同处找出不正常设备故障的位置。在认为接线错误,或在定值校验过程中,发现测试值与预想值有较大出入,而且又无法将其原因断定之类的故障。在进行回路改造和设备更换后二次接线不能正确恢复时,就可以使用参照法。
(4)逐项拆除法。逐项拆除法适用于多个回路并联在一起的情况,也就是直流接地回路,交流电源熔丝故障等。使用这种方法只要指将并联在一起的二次回路顺序脱开,然后再将其逐次放回,如果故障出现,就说明故障发生在这一段回路中。再使用同样方法在这一路内用对更小的分支路进行查找,直至找到故障点。
此法主要用于查直流接地,交流电源熔丝放不上等故障。如果是直流接地故障。即可通过拉路法,并根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3S,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,短路故障出现于回路中,或二次交流电压互串等,就可从电压互感器二次短路相的总引出处将端子分离,消除故障。然后逐个恢复,直至出现故障,再依次排查各分支路。如果出现的障是继电保护装置的保护熔丝熔断或电源空气开关合不上,那么就可以将每个插件拔出,在插入进行检查,在检查故障时,要仔细观察熔丝熔断的范围,并通过熔丝的变化将故障发生的范围缩小。
4 继电保护技术的发展
继电保护技术是随着电力系统的发展而发展的。电力系统的发展,使得系统容量不断增加,电压等级越来越高,系统接线及运行方式越来越复杂。为满足电力系统对继电保护提出的四个基本要求,继电保护也由简单的过电流保护开始,相继出现了方向性电流保护、低电压保护、距离保护、差动保护、高频保护、微波保护、行波保护等。
电力系统继电保护技术的发展,不仅与电力系统的发展密切相关,而且还与电子通信、计算机、信息科学等新技术、新学科的发展有着密切的关系。从20世纪最先出现的感应型过电流继电器,到50年代的晶体管及整流型继电保护,再到80年代的集成电路继电器,无一不反映了当时这些领域的新成果。
参考文献:
[1]王惠梅.继电保护的意义、基本要求、发展[J].科技资讯,2012(6).
[2]张亚萍.电力系统继电保护常见典型故障及保护措施[J].科技与企业,2012(8).
论文作者:韩志
论文发表刊物:《电力设备》2017年第7期
论文发表时间:2017/6/28
标签:故障论文; 继电保护论文; 回路论文; 电力系统论文; 设备论文; 保护装置论文; 接线论文; 《电力设备》2017年第7期论文;