探讨铁道电气化技术的问题论文_刘毅

探讨铁道电气化技术的问题论文_刘毅

刘毅成都交大许继电气有限责任公司 611731

摘要:本文介绍电气化技术以其拥有的优势在铁路方面得到的了广泛的应用,提出铁路电气化技术中的常见问题以及相应的解决措施,仅供参考。

关键词:铁道电气化技术;常见问题;对策

一、电气化铁路的组成铁路机车按照牵引动力所使用的能源类别可分为:蒸汽机车、内燃机车和电力机车三种。与此对应的铁路牵引方式也有蒸汽牵引、内燃牵引和电力牵引三种。所谓电力牵引,就是由外电源供给动力车电能的牵引方式。采用电力牵引的铁路称为电气化铁路。作为电气化铁路牵引动力的电力机车,本身不带能源。他必须从外部电源和牵引供电系统获得电能,电能经过变换后,输送到牵引电动机,使牵引电动机旋转来驱动车轮转动牵引列车运行。因此电气化铁路除了一般的铁路线路、车站、通讯、信号灯设施外、还包括特殊的牵引供电系统、电力机车以及相应的运行、维修和管理单位供电段、机务段、电力调度及其主管部门等。

二、铁道电气化技术的问题1、电分相方面由于我国列车速度大幅提高,因此在电气化铁路普遍采用的是锚段关节式电分相,而不是传统的器件式电分相,关节式电分相的绝缘锚段分为三跨、四跨和五跨三种形式,由于每个关节跨距的长短不一样,因此用来衔接两个关节的布置也不相同,关节式电分相也包括了五跨、七跨、八跨等等多种形式,关节式电分相的共同特点就是组成部分都是两个绝缘锚段关节和一段接触网中性区,电气绝缘的实现条件是在空气绝缘间隙实现的,因此列车在运行到关节式电分相的时候,乘务员就必须要将机车主断路器断、合电操作以及将其他受电弓下降,在高速列车运行中需反复操作,这样会加强乘务员的劳动强度,一旦遗忘或疏忽,就会造成接触网相间短路,形成供电事故,运输中断。

在机车高速运行的过程中,升降受电弓会对接触网的安全运行造成威胁,发达国家以增加高速机车的中性区长度来解决这个问题,整列电动车组两手电弓的距离小于允许多弓运行的最小距离。但我国由于路网不发达,客货混运、高低速列车混跑的情况并不少见,如果采用较长的电分相中性区,会同时影响高低速列车的运行速度,而且,即使采用较长的电分相中性区,有时也会发生电力机车停在分相无电区的情况。

2、供电方式方面我国应用最广泛的供电模式是自耦变压器(AT)供电模式,受列车运行位置影响,为了降低绝缘标准,从55kV降低到27.5kV,这种供电模式虽然省却了一套设备容量,却失去了牵引网的供电能力和防护干扰能力。AT模式的导线截面相同而且边界为最大载流,假设日本模式供电能力为1,直供方式为0.5,而AT模式则介于二者之间,一个供电臂中的AT段越少,供电能力损失越显著。

当发生接触网T与负馈线F短路,如果牵引变电所出口的接触网断路器与负馈线断路器也是联动的而不是同时跳开,在短时间内,先跳开的断路器就会承受55kV电压。如果另一个出口断路器拒动,那么,另一个断路器就会长时间的承受55kV电压。而且为了适应AT模式的轨一地接线要求,牵引变压器次边不但需要引出中间抽头,而且两组绕组还需要进行特殊设计和容量优化,设计制造难度和造价都增加了。

期刊文章分类查询,尽在期刊图书馆

3、牵引供电系统方面由于变压器、牵引电机以及电力电子器件的非线性和非线性调节,同时电力机车的基波电流滞留后电压一定的角度,因此机车的电流中有大量的谐波成分,这些谐波在三相供电系统中不对称分布,时间性和随机性很强,导致了无功功率和谐波电流的存在,使得变压器、电力线路以及旋转电机的附加损耗加大,引起局部过热,金属疲劳和机械损坏,缩短设备的使用寿命,在串联和并联谐波比例比较高的牵引变电站附近发生电网和电容器组的并联谐振,造成电容器组的损坏,使得继电器出现频繁发动,误动、拒动等现象,为了弥补无功功率对电力系统的损失,铁道部门每年都要支付大量的额外费用给电力部门。

牵引变电所采用单向联接、单相V形联接和Y,d-11这三种基本接线方式时,会在三相电力系统产生负序电流,除了会产生无功功率,还会降低变压器的额定输出功率,运行效率低,引起旋转电机的附加发热和振动,对安全运行造成危害,而且负序电流流过电力系统时,不仅占用输电系统的容量,还会造成电能损失,电气化铁道产生的大量负序侵入时会导致以负序电流或负序电压为动作条件的继电保护装置的误动作,引起供电中断。

三、铁道电气化技术常见问题解决措施1、电分相问题的解决方案意大利在修建罗马—那不勒斯高速铁路时采用了双中性段关节式电分相。

该电分相有两个中性段三处空气间隙,有如下运行特点:(1)两台机车重联运行,不论其受电弓间距多少,不会造成两相短路。接触网检测车附挂在电力机车后或附挂在其牵引的列车后,不论其受电弓间距多少,也不会造成两相短路。多台电力机车附挂同时升弓运行只要3台机车受电弓位置不与3个绝缘锚段关节位置对应,也不会造成接触网相间短路。(2)对电动车组,在受电弓高压母线不连的条件下,两台受电弓同时升弓运行,不论受电弓间距是多少,不会造成接触网两相短路。3台及以上受电弓同时升弓,只要不相邻受电弓间距大于分相两中性区最外端的距离,也不会造成接触网两相短路。在高压母线相连的情况下,只要两台受电弓间距不大于相邻两个绝缘锚段关节最外端距离也不会造成相间短路。(3)该分相无电区长度小于142m,与我国目前采用的关节式电分相无电区长度基本持平,不对机车运行提出更高要求。不难看出,相比双绝缘锚段关节式电分相,双中性段关节式电分相无电区长度未增加,由于又多了一处空气绝缘间隙,对机车多弓运行限制条件大大减少。

2、供电方式问题的解决方案对接触网设置加强导线提高供电能力。当一个供电臂中的AT段较少时,为了避免AT供电方式结构复杂的固有缺点,可以适当考虑采取直供+加强线或直供+加强线+回流线方式,也可以利用新提出的AT供电模式,牵引变电所内不设AT,把AT布置在线路上,从而简化系统,节约投资,牵引变压器也不需中间抽头,可很大程度简化牵引变压器的制造难度,同时,省去了牵引变电所的轨一地回流线布置,增加供电能力,延长供电臂,减少电分相数目。出于安全考虑,出口断路器绝缘仍应采用55kV的电压绝缘等级设计。断路器断口电压问题也可以得到很好地避免。开关的绝缘等级更高,但工作电流比AT模式小,在相同的供电能力下,新模式要求牵引变电所的母线、馈线的导线截面更小,有助于省掉设置于大运量线路首个AT段的加强线,更有利于接触网悬挂的轻型化。

3、牵引供电系统问题解决方案改善机车的性能,尽量减少谐波,配备用来校正功率因数的装置,在“交-直-交”和“交-直”机车上是机车的输入电流的基波与电压同相位,在牵引变电所采用同相供电系统与对称补偿技术或同相贯通供电技术对机车产生的谐波电流和无功功率就近补偿,也可以采用SVC和APF补偿。SVC是解决电铁负序补偿.并兼顾滤除高次谐波的理想方式。不仅可以改善电气化铁道对电网综合电能质量的影响。提高电气化铁道本身的供电质量,还能获得经济效益。同时为了整体减轻进入电力系统的负序分量,各种接线的牵引变电所应轮换接入电力系统的不同相。还可在电力系统变电站安装承受负序电流的能力大、负序阻抗较低且防震性能良好的特殊的同期调相机。

参考文献:[1]李建设,李晓东.SS4+改型电力机车单缸抱闸导致轮箍弛缓的原因分析及对策[J].铁道机车车辆,2010,2(3).[2]李冬,程翠微.万里电气化铁路对电力系统的负序影响和治理措施的分析[J].中国新技术新产品,2011(12).

论文作者:刘毅

论文发表刊物:《电力设备》第01期供稿

论文发表时间:2015/9/22

标签:;  ;  ;  ;  ;  ;  ;  ;  

探讨铁道电气化技术的问题论文_刘毅
下载Doc文档

猜你喜欢