摘要:致大规模停电的主要原因之一,对社会生产的影响力非常大。因此,降低线路故障率是保证线路效益的关键。出于此项考虑,在线路设计过程中,必须将防雷考虑在内,采取有效的避雷措施,尽可能的避免雷害事故的发生。
关键词:输电线路、设计、线路防雷技术、运用、解析
1、雷电对输电线路的危害
1.1雷电的高热效应对输电线路的危害
雷电在放电过程中打到输电线路上,雷电的高热效应就会瞬间转化成数十万安培的电流,此时雷电流在输电线路杆塔上产生非常高的热能,会达到金属的融化点,输电线路杆塔上的金具导线可能出现融化的现象,严重的将会出现断线或倒杆,对电力系统的稳定运行和工业的安全生产都造成了一定的威胁。
1.2雷电的高压效应对输电线路的危害
雷电在放电过程中,雷击点瞬间达到10万V以上的高压,如果雷击点在输电线路上,输电线路上的一些电气设备和金具导线瞬间受到非常大的破坏,可能会出现短路、跳闸、变压器烧毁等情况,破坏比较严重的将会引起火灾,使电力部门蒙受很大的经济损失。
1.3雷电产生的电磁感应对输电线路的影响
雷电的形成过程会出现一定的电磁效应,当雷电在放电时打到输电线路上时,电磁效应在输电线路上会形成交变电磁场,使输电线路中的电流增大,从而将输电线路瞬间过载烧毁。第四,雷电的机械效应对输电线路的危害。雷电具有一定的机械效应,被雷电击中的物体出现变动和爆炸的情况,从而进入电力系统中,对输电线路、变压器以及发电机造成破坏,对人们的生活和电力系统的稳定运行有着消极的影响。
2输电线路设计中线路防雷技术的运用
2.1科学布置输电线路
由于输电线路雷击故障的产生与线路所在地域环境存在密切的关联性,因此在输电线路设计过程中,需对输电线路所在地的地理环境、气候条件、地质条件等进行综合分析,避免将输电线路布置于雷电多发区域,从而减少雷击故障的发生。一般情况下,雷击多发区域可分为以下几类:地下水位相对较高且富有导电性矿藏的地区;山区风口处及顺风向的河谷区域;地质电阻率极易发生改变的地区,或者土质电阻率相对较低的地区,比如山坡断层地带、山谷地区、农田等;具有丰富水资源的盆地区域;土质相对较好、植被覆盖率较高的地区,比如树林。
2.2增强线路元件的绝缘强度
通过提高元件的绝缘强度,可以显著改善防雷效果。①要不断提高输电线路的绝缘能力。②要着力提高输电线路的防雷效果。
此外,为保证开关以及熔断器等防雷设施能够有一个良好的相应动作,要对电压电流进行合理的处置。另外,要根据规范要求做好接地导线的保护工作,进而不断提高输电线路运行过程中的稳定性。接地装置主要由电缆插槽中的接地、焊接头、压力带和水平接地构成。为了构筑接地和拔出线,使用电镀钢。连接螺丝并购买优质的锌泥,每年检查一次,生锈应该马上换。接地体的连接应焊接,焊接部位具有非常强的强度。有缺陷区域的话,应该涂上防锈的漆。
期刊文章分类查询,尽在期刊图书馆降低了相对湿度,解除了电化学的腐蚀的影响。
2.3科学合理的安装避雷设备
输电线路的设计受到很多因素的影响,在实际建设中很难完全避免不受到雷电的影响,这就需要对输电线路进行避雷设备的安装。在安装避雷设备时,首先要安装避雷线,当前输电线路中的避雷线可以有效的防止线路受到雷电影响,在受到雷击后能够起到很好的分流作用,而且屏蔽能力出色,因此在输电线路防雷中得到了广泛的应用。输电线路通过安装避雷线,也加强了绝缘子的抗雷能力,而且由于避雷线和导线的耦合关系,杆塔的防雷能力也大幅度提高,因此防雷线对于输电线路的防雷起到了重要的作用。防雷线在设计安装时,要根据输电系统的电压情况而定,35kV及以下的输电线路不用安装避雷线,而110kV-220kV之间就需在安装避雷线,而且如果电压在220kV以上,则需要安装双避雷线,以确保输电线路的避雷性能。其次是安装负角保护针,负角保护针位置在杆塔最顶端,在受到雷击时,负角保护针承担了巨大部分的电压,减少了雷电对于杆塔的贯穿,也降低了绕击现象发生。最后是安装可控避雷针,杆塔受到雷击时,可控避雷针就会起到反射作用,针头部位就会出现强磁场效应,从而达到脉冲放电效果。
2.4有效应用自动重合闸技术
电网在实现自我保护的时候,自动跳闸是电网供电系统中比较理想的方法之一,系统如果能够在一定程度上完成自动跳闸,以前的相应事故和故障就会完全消除。输电线路在运行的过程中,遭到雷电击中,就会出现自动跳闸,这样就可以有效消除在线路中所产生的一系列的闪络放电等故障,从而有效规避了长期故障的发生。针对这种情况,为了能够在最大程度上有效提升供电网络的可靠性和稳定性,就需要有效确保自动重合闸装置的合理安装,并有针对性的把它和供电系统的继电保护有针对性的结合,这样能够在最大程度上实现联接,实现线路雷击跳闸的自动恢复,确保供电系统更安全可靠。
2.5减小接地电阻
使用避雷线、避雷器和自动合闸系统都是通过物理条件来减少雷电伤害的防雷技术,如果能够减少接地的电阻,就可以使得防雷效果更上一层楼,如何减小接地电阻,这里我们提供两个有效的措施。首先可以利用爆破技术,爆破技术是近几年比较流行的一项新技术,可以有效的使土壤的性质发生一定的变化,也就是通过爆破的手段将这片区域的土地炸开,使得电阻率比较小的物质能够进入地下,有效地减少土地的电阻率。另一个方法就是在土壤中加入适量的降阻剂,这里我们建议降阻剂加入到铁塔附近的土壤之中,使得降阻剂中的电解质和水分能够最快的速度融入土壤之中,从而减小接地电阻。
结束语:输电线路运行的稳定与安全对保障整个电力系统运行的稳定与安全至关重要。因此,相关部门及工作人员应在明确认识防雷技术应用重要性的基础上,结合雷电故障形成原因,根据输电线路工程实际情况,对输电线路进行科学的设计,实现防雷技术在输电线路设计中的科学应用,从而降低雷电故障发生概率。
参考文献:
[1]于政.输电线路的防雷设计与运维技术[J].电子技术与软件工程,2019(20):224-225.
[2]舒生前.220kV输电线路综合防雷技术与接地电阻设计探析[J].通讯世界,2019,26(08):306-307.
[3]吴玺.线路防雷技术在输电线路设计中的运用[J].西部广播电视,2014(18):177+179.
[4]包英锋.110kV输电线路防雷设计初探[J].科技创新导报,2012(32):64-65.
论文作者:李方胜
论文发表刊物:《电力设备》2019年第19期
论文发表时间:2020/1/15
标签:线路论文; 雷电论文; 防雷论文; 避雷线论文; 杆塔论文; 输电线论文; 就会论文; 《电力设备》2019年第19期论文;