摘要:国际高速铁路移动通信技术发展早效率高,而我国的高速铁路移动通信技术虽然起步较晚,但也有大面积的运用,在这方面投入的研究精力逐渐增加,取得了不错的成效。未来高速铁路移动通信技术将要从那些方面发展,了解这些问题有助于我们更加切实有效地发展相关技术,也能为实践运用提供更多的帮助。
关键词:高速铁路;通信系统
引言:我国在高铁的硬件建设方面虽然领先全球,但对于高速铁路移动通信技术的掌握还不够成熟,因此,我国应具有一定的前瞻性,尽快研发更安全可靠、传输性能更优质的专用移动通信技术。为此,在接下来的文章中,将围绕高速铁路通信系统方案方面进行详细分析,希望能给相关人士提供重要的参考价值。
1.国内高速铁路移动通信技术
我国在高速铁路移动通信技术发展的早起,也采用了GSM-R技术,其中较为具有代表性的是青藏线路和大秦线路,在这之后我国经济持续发展,相关技术也逐渐运用到了更多的线路,例如京沪、沪宁、沪杭等。GSM-R技术是一种较为成熟的技术,在应用方面具有较高的效率,但是无可避免的是,随着时间的推移,更多更高的要求被提出,GSM-R技术已经逐渐无法满足当下高速铁路通信技术发展的要求了。在此之外,出于实际情况的考虑,也有不同的线路采用了其他技术。比如在朔黄线路上,采用了LTE-R技术,而在台湾台北到高雄的线路则是采用了WiMax系统来进行通信系统网络的建设,随着时间的发展,这一线路逐渐不符合当下时代发展的要求,台湾方面正在进行有关新系统取代旧系统的研究。
2.高速铁路移动通信技术的发展
2.1基于5G的高速铁路移动通信技术
1)基于5G的高速铁路无线信道建模。以现在的技术水平来看,高速铁路在运行环境方面,对散射环境的要求并不复杂,并且多径数量也很少,LOS(服务水平)特征性较明显。显著地LOS特征就意味着更小的多径时延扩展或者更宽的想干宽带,也就是说通信环境将更优质。当然,移动速度过快将极大地增强多普勒频移的情况,但LOS依然可以显著降低这一现象。2)基于分布式网络和云的架构。当前网络基站的实际资源使用率非常低,基站的位置决定了资源的使用状况,在高速铁路的环境中会产生相当显著的潮汐效应。而为了保证铁路在运行状态下的安全性,只能采取较大时间间隔发车的方法,如此一来,在同时段内,同一线路上运行的列车数量就会非常少,浪费资源。采用云无线接入网络架构就能有效解决这一难题,它的主要思想是集中基站间共用的资源到某一基带处理池中,然后集中控制这些资源。3)控制面和用户面分离。如图所示,一般情况下,服务基站和接入用户之间会存在两个平面的连接,也就是控制面和用户面,在这之中,控制面是承载用户与接入网的控制指令的,而用户面则是处理业务数据传输功能的。当控制面的覆盖范围能够满足移动范围时,用户整体的移动性就都得到了保障。所以,在此结构中,用户的控制面会被保留于低频频段,因为次频段具备优质的传输性能,并且覆盖的范围也非常广泛。可是如果要考虑成本问题,这一频段也可以采取利用LTE-R遗留频段的方法已达到目的,但同时真正的用户面就应被搬离出去。应将数据的承载者放置在高频段处,以此扩大系统的容量。
4)频谱融合的异构网技术。就目前来看,可以采用增强频谱效率或扩大系统带宽的方式来提升系统所需的容量,当然,在这两种方法当中,采用扩大系统带宽的方法当然是最简单有效的。当然,合理利用非许可证频段是5G高速铁路移动通信增加带宽并提升系统容量的主要方法。此技术可能会遇到一些比较严重的挑战,例如协调方案受到干扰等,为妥善处理这一问题,建议分为两步进行,第一步,进行信道质量检测,检测应在接收端完成;第二步,对信道进行筛选,选择出满足最低要求的信道[1]。5)多天线及分布式天线技术。目前比较可行的方案为:大幅度增添车载台的天线阵列组数量,然后合并信号,此后再将不同组别天线阵列的权重进行适当调整,通过这种方法可以将不同天线阵列之间的关联性作改变。经过这些调整之后,LOS就能在高速铁路的环境下显著提升其系统容量。当前,高速铁路移动通信所要面对的最严重的问题就在于越区切换,如果进行频繁的越区切换不利于列车运行安全,因此,应采取分布式天线的技术,以尽可能减少切换次数。6)多普勒效应及快速切换技术。在高速铁路运行时,频繁切换是引起失误的主要原因,为此,高速铁路的移动通信系统应该采用中断时长短的快速切换技术,此外,群切换也会存在一定问题,而这一技术应能够一并解决。以当下的情况来看,最好采用基于双播的切换方案。
2.2综合业务接入系统和承载平台
通信系统承载平台最主要的数字传输体制就是SDH体制,这种体制的使用适用于多种业务开展,例如ATM取款机、IP等业务的连接和处理;MSTP系统的特点就是对信息的接入和综合处理功能非常好,可将多种业务的信息网络集成一个网络设备,例如对公务电话、调度集中等业务数据的处理,可以把区间接入系统中的信息数据传动到目的车站。高速铁路业务信息不仅容量非常大,而且种类繁多,所以根据使用需要对承载平台的设计进行有效的更改,将承载平台的主要结构分为多业务传输系统和接入网系统。多业务传输系统主要任务是解决车站对业务通道的需求,并且为下一层的通道提供有效的保护;而接入网系统主要解决多种业务通道对信息采集点中对信息的接受和传输。MSTP的使用能为高铁客户提供相对的宽带业务,但是想使用语音业务就需要光节点对语音数据进行介入。高速铁路的传输系统不仅要为列车提供业务接口,还要为旅客的服务系统提供接口,把旅客的相关的服务业务储存到传输系统,根据采集的信息接入传输设备,构成传输系统,通过MSTP系统将信息传送到信息综合调度系统。在车站内和列车沿线内的信息接入点的设施必须具备能介入多种业务的光节点,在部分车站设置区域光线路终端设备,将接入网络形成一个一体化综合业务的网络[2]。
结论:
简而言之,高速铁路自诞生之日起,就伴随着对移动通信的承载需求,一部分需求来自高速列车的列车控制与调度系统,这是高速列车的核心;另一部分来自于乘客需求。在过去,GSM-R技术是比较主流的高速铁路移动通信技术,除此之外,国外比较有代表性的还有TGV和ICE等应用的移动通信系统。我国高速铁路移动通信技术的发展并没有经过很长时间,但目前正考虑取代GSM-R技术的移动通信关键技术。未来,随着5G时代的临近,基于5G的高速铁路移动通信技术将成为发展趋势,而高速铁路无线网络接入系统也将在不久的将来投入运营[3]。
参考文献:
[1]方旭明,崔亚平,闫莉,宋昊.高速铁路移动通信系统关键技术的演进与发展[J].电子与信息学报,2018(01):64~68.
[2]张仁美.当前高速铁路移动通信系统关键技术的演进及发展探析[J].电脑知识与技术,2018(21):29~31.
[3]薛晓勇.高速铁路移动通信系统关键技术的演进与发展[J].信息通信,2017(09):34~36.
论文作者:刘全
论文发表刊物:《基层建设》2019年第15期
论文发表时间:2019/8/2
标签:高速铁路论文; 系统论文; 技术论文; 业务论文; 这一论文; 通信系统论文; 频段论文; 《基层建设》2019年第15期论文;