空间与图形教学目标和教材编制的初步研究,本文主要内容关键词为:教学目标论文,图形论文,教材论文,空间论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
根据《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》),空间与图形部分的教学内容是义务教育阶段数学课程的重要组成部分.如何设计初中空间与图形的教材内容,许多问题需要研究.本文对其中的两个主要问题作初步的探讨.
1 空间与图形的教学目标
《课程标准》是编写新一轮义务教育数学实验教材的依据,认真学习研究《课程标准》是明确“空间与图形”的教学目标的前提.我认为,要综合《课程标准》中所阐述的整个义务教育阶段数学课程的教育价值、初中数学总体教学目标、“空间与图形”教学任务等几方面来领会空间与图形的教学目标.此外,我认为可以从下面两个角度来认识空间与图形的教学目标.
首先,从学生的数学知识学习、数学能力培养的角度来看,我认为研究空间与图形的教学目标,主要有以下三个方面.
1.1 学习空间与图形的基础知识
数学作为研究现实世界的空间形式与数量关系的一门学科,几何学又主要作为反映现实世界空间形式的一门学科,是学生认识现实世界的锐利武器.几何学同其他科学一样来源于实践,是人们为了自身的生存和发展,在与自然界长期奋斗中发展起来的,欧几里得的《原本》是早期人类对于生活其中的现实世界中图形知识的系统认识和总结,是人类对于现实生活空间的直接反映,并用来指导人们的生产和生活实践.一位数学家这样描述几何学:“欧几里得几何建立了很简单直观、能为孩子们所接受的数学模型,然后教会他们用这样的数学模型去思考去探索.点、线、面、三角形和圆——这是一些多么简单又多么自然的数学模型,却能让孩子们在数学思维的天地里乐而忘返.很难想象有什么别的材料能够这样简单同时又这样有成效.”在现代社会,基本的图形认识,是人们生活、工作、科研活动中的不可缺少的基础知识,每一个普通公民,不论人们从事什么工作,都会经常遇到各种几何量(长度、面积、角度、体积等等)的计算,各种基本几何图形(如三角形、四边形、多边形、圆等等)的性质和作图问题.空间与图形的基础知识是现代社会普通公民应该具有的基础知识.
龚升教授最近在“数学历史的启示”一文中系统论述了目前我国中学数学教学内容中的算术与代数、几何与三角、微积分的教学价值、内容体系以及与大学数学课程之间的关系.他指出,中学生必须学习平面几何和立体几何的第一个理由是可以认识人们生活的三维欧氏空间中一些最基本的几何关系与性质.
1986年中国教育学会数学教学研究会和人民教育出版社数学室的“中国经济与社会的发展对于数学基础知识和技能的需要的调查研究”得到结论:“平面几何的基本知识,解直角三角形与求积(包括立体)以及画图的技能,是绝大多数行业与专业所需要的”.
就几何学的发展来看,在人类进入信息社会的今天,几何学对于社会发展的贡献越来越突出.无论是在CT扫描、核磁共振等医疗成像技术上,还是在机器人、光盘、传真、无线电话、高清晰度电视等最新电子产品上,都广泛应用了几何学理论.
简而言之,几何学提供了现实世界的一个基本模型,这个模型的基本知识是学生易于学习、理解和掌握的应用广泛的基础知识.
1.2 建立空间观念和几何直觉
空间观念一般是指:能够由形状简单地实物想象出几何图形,由几何图形想象出实物的形状;能够由较复杂的平面图形分解出简单的、基本的图形;能够在基本的图形中找出基本元素及其关系;能够根据条件作出或画出图形,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型;能描述实物或几何图形的运动与变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考.
几何直觉是具有意识的人脑对于数学对象、结构以及规律性的敏锐的空间想象和迅速的判断,是想象和判断的有机结合.
虽然空间观念和几何直觉的提高是空间与图形知识学习的必然而自然的结果,但空间与图形的教学仍要重视培养学生的空间观念和几何直觉,因为这两者对于学生学好整个中学数学课程具有重要的意义.
吴文俊院士指出“几何学有形象化的好处,几何会给人以数学直觉.不能把几何学等同于逻辑推理.应该训练学生的逻辑推理能力,但也应适可而止.只会推理,缺乏数学直觉,是不会有创造性的”.对于数学学科的分类,大体说,数学中研究数量关系或数的部分属于代数学的范畴,研究空间形式或形的部分属于几何学的范畴.近代函数概念与微积分方法的出现,在数学中形成了系统研究形、数关系的分析学,成为近代数学中发展最迅速的部分.几何、代数、分析三大类数学,构成了整个数学的本体与核心,以上的数学基本结构也反映在中学数学的基本结构上.目前中学数学包括了代数、平面几何、立体几何、解析几何、概率与统计、微积分初步的基础知识.在学习这些内容的过程中,图形的直观性起着重要作用.龚升教授指出:“不学习平面几何和立体几何,无法学习解析几何和微积分”.实际上,数学通过数与形的联系成为一个有机的整体,尤其是,一旦实数以及实数组与在n维乃至无限维空间中的点建立了一一对应,从某种意义来说,整个数学就与图形密切相关了.所以,在几何教学中必须重视培养学生的空间观念和几何直觉.
几何应作为数学教育的重要课程之一是长期以来国际数学教育界多数人的看法,其中重要的原因是几何在培养学生的空间观念和几何直觉上的作用.正如在第七届国际数学教育大会上一位俄罗斯的数学家所说:“几何(指欧氏几何)在数学中占据着一个特殊的地位,是因为它具有独特的作用,尤其是它的想象力和直观性.几何的实质是与直观的结合,一方面是一种生动直观的想象,另一方面是严格的逻辑.它们互相联系,互相渗透,互相引导.对于一个人来说,想象力是一种非常重要的能力,而几何发展了这种能力.在几何教学中必须确信学生在他的直观形象中领悟了每一个要领和定理.某人可能忘记他学过的几何,但对于空间的感知和空间想象能力诸方面的痕迹将永远保留下来.另一方面,几何灵魂的一个因素是它的逻辑,这是由它的构造特点而体现的,它来自经过欧几里得的一系列经过证明的理论.当一个人把所有的定理和证明都忘记时,证明的思想(即“必须要经过证明的”理论),则得以长期保留下来.”
1.3 培养思维能力
《课程标准》重视培养学生的思维能力,在《课程标准》的前言中就提出要使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.此外,《课程标准》对推理能力作了如下阐述:“推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论质疑.”从上面可知,《课程标准》重视让学生经历对几何图形性质的探索和证明的完整过程,让学生通过对几何图形的探索,对几何图形的性质进行猜想、发现并加以证明.在教学任务的表述中,《课程标准》强调了合情推理、有条理的思考、体会证明的必要性、综合法证明的格式、初步的演绎推理能力和初步的公理化思想,不追求证明的数量和技巧.
让学生经历对图形性质的探索、发现和证明的完整过程,非常有助于让学生对图形的性质有真正的体会和理解,防止学生对于图形性质的机械记忆,并有助于更好地确立学生在数学学习中的主体地位.在过去的几何证明教学中,证明的必要性虽有所涉及,但给予重视不够,有时在没有认识为什么要对命题进行证明的情况下就开始了论证过程,目的性不明确,从而不能很好地理解证明.
虽然除了在空间与图形内容以外的其他内容(比如在初中阶段的数与代数、统计与概率)中可以而且也应该担负起培养学生逻辑思维能力的任务,但空间与图形(几何)教学是培养学生的思维能力的主要途径.首先,空间与图形不仅仅是图形知识的堆砌,而是被组织成逻辑性较强的教学体系,逻辑思维的规律在空间与图形里得到了较充分地体现.例如,三段论是演绎推理的主要形式,空间与图形的教学中几乎到处用到.思维的基本形式是概念、判断和推理,通过空间与图形中大量的概念、判断和推理的教学,学习逻辑思维的基本规律,掌握常用的推理方法,可以非常有效地提高学生的逻辑思维能力.第二,利用空间与图形对学生进行逻辑思维的训练的优越性还在于不要求学生有太多的知识作为基础,学生可以借助于图形的直观性,这一点适应了初中学生的认识水平.第三,初中学生在学习知识的过程中已不再满足于机构的模仿,单纯地记忆知识,而比较喜欢摘清来龙去脉,凡事常喜欢问“为什么”,因为初中阶段是培养逻辑思维能力的良好时机.
在这方面,我们来看一看数学家是怎样说的.
吴文俊院士指出:几何在中学教育中有着重要位置.几何直觉与逻辑推理的联系是基本的训练,不应忽视.王元院士最近有一次论述几何教学时指出:“欧几里得《几何原本》除对几何很重要外,也包括了算术的基本规律,其主要作用是一本严格的逻辑推导书,所以有两千多年的影响”.龚升教授在“数学历史的启示”一文中论述初等几何的教学价值时又指出:“平面几何与立体几何是训练学生严格逻辑思维的最好方法之一,这种训练比上一门形式逻辑课更为有效,而这种训练对学生终身有用”.张景中院士在最近一次访谈中论及几何教学:“我认为几何是培养人的逻辑思维能力,陶冶人的情操,培养人良好性格特征的一门很好的课程.几何虽然是一门古老的科学,但至今仍然有旺盛的生命力.中学阶段的几何教育,对于学生形成科学的思维方法与世界观具有不可替代的作用.为什么当前西方国家普遍感到计算机人才缺乏,尤其是编程员缺乏,其中一个原因是他们把中学课程里的几何内容砍得太多,造成学生的逻辑思维能力以及对数学的兴趣大大降低.”牛顿在撰写《自然哲学的数学原理》时,就深受几何公理方法的影响,他在序中写:“从那么少的几条原理,就能够取得那么多的成果,这是几何学的光荣.”
空间与图形除了从数学能力角度看主要应有以上的教学目标和价值以外,在培养学生的运算能力和抽象能力(包括数学建模能力)等一些一般能力方面也起重要作用.此外,很重要的是要从它具有的思想教育、品格养成方面的角度来认识空间与图形的教育价值.从培养人的角度看,这甚至是更重要的教学目标.
在这方面,有过许多重要论述:江泽民总书记在谈到几何学习的作用时指出:学习几何能锻炼一个人的思维,解答数学题,最重要的是培养一个人的钻研精神.爱因斯坦在论述欧氏几何时曾说:“世界第一次目睹了一个逻辑体系的奇迹,这个逻辑体系如此精密地一步一步推进,以致它每一个命题都是绝对不容置疑的——我这里说的是欧几里得几何.推理的这种可赞叹的胜利,使人类的理智获得了为取得以后成就所必需的信心.”王梓坤院士指出:“在数学中严谨的推理和一丝不苟的计算,使得每一数学结论不可动摇.这种思想方法不仅培养了数学家,也有助于提高全体人民的科学文化素质,它是人类巨大的精神财富.”
关于空间与图形知识的育人价值,归纳起来有以下几个方面:
1)有利于培养学生爱国主义的思想情感;
2)有利于学生形成辩证唯物主义的世界观;
3)有利于培养学生初步的创新精神和探究能力;
4)有利于培养学生学习数学的兴趣和信心;
5)有利于学生养成良好的学习习惯和思维习惯.
2 教材编制的几个问题
2.1 内容结构体系问题
怎样根据《课程标准》,把《课程标准》中空间与图形四个方面(图形的认识、图形与变换、图形与坐标、图形与证明)的教学内容组织成一个合理的教学体系是完成空间与图形教学目标的关键.根据上面的论述,我认为应该按照图形的认识作为一条主线,按图形内容的逻辑关系来构建一个内容体系.内容的一种符合逻辑的体系结构,有助于学生掌握空间与图形的知识,有助于学生思维能力的提高,也有助于学生良好的空间观念的建立.所以,对于这部分内容,应按几何图形知识的逻辑关系构建内容体系,直观并可以适当借用平面直角坐标系介绍几何变换的初步知识,通过几何证明,着重培养空间观念、几何直觉和思维能力,从而逐步加深对基本几何图形的认识,通过知识学习,以达到培养学生爱国主义的思想情感、初步的辩证唯物主义的世界观、初步的创新意识和探究能力、学习数学的兴趣以及良好的学习和思维习惯等目标.
根据以上的思考,我们对于空间与图形的内容结构作出一个设计,从简单图形的认识开始,让学生通过丰富的实际例子,来认识有关图形的知识与实际事物的广泛联系,了解学习空间与图形知识的必要性,然后依次讨论相交线与平行线的基本性质,引入平面直角坐标系为研究与描述图形及其变换提供工具,讨论三角形、全等三角形、直角三角形的基本性质,结合等腰三角形研究图形的轴对称性,进而学习四边形、圆、图形的旋转、图形的相似,最后学习锐角三角函数和视图与投影的知识.
2.2 把握好教学要求
《课程标准》继承我国数学教学的优良传统,关注基础知识学习和基本技能训练,但控制了教学内容的范围和教学要求.在具体的教学实践中,教学要求的把握直接影响学生负担的轻与重,从而直接影响学生是否能够全面发展.学科教学必须服从总的培养目标.与国际比较,我国义务教育阶段学生数学学习负担相对来说是比较重的,在一定程度上存在着“繁、难、偏、旧”的问题,不利于学生的健康成长.《课程标准》中强调探索图形性质的过程,并在此基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求.《基础教育课程改革纲要(试行)》指出,新课程要使学生在具有适应终身学习的基础知识、基本技能和方法的同时,还要具有健壮的体魄和良好的心理素质,养成健康的审美情趣和生活方式,成为有理想、有道德、有文化、有纪律的一代新人.所以应该从育人的高度来认识教学内容和要求的变化,在教材中把握好教学内容和教学要求的深广度.
2.3 应从学生的已有生活经验出发
人人都生活在充满具有种种几何形状的物体的现实空间之中,学习空间与图形知识的最直接目的就是更好地理解生活其中的现实世界,空间与图形的教学应从学生的已有生活经验出发.空间与图形的知识源于现实世界,但又是现实世界的抽象,因而似乎很具体,一些最基本的图形概念的形成过程中就要注意这个问题,要从学生的生活经验出发,从而使学生认识空间与图形知识与现实世界的密切联系,以及知识在实际中的广泛应用.
2.4 培养学习兴趣
学习兴趣对于学生能否学好空间与图形的知识至关重要.我国的数学教育界一直非常重视对于学生学习数学的兴趣的培养,有大量的理论研究和实践探索.根据1987年全国初中数学教学调查,约有70%的初中学生对于数学学习有兴趣,这样的成绩在国际数学教育比较中处于领先位置,成绩的取得归功于我国数学教育界全体同志的努力.但是我们不能满足于现在的成绩.《课程标准》的一个基本理念是“数学教育面向全体学生”,这是义务教育对于数学教育的必然要求.在培养学生学习数学的兴趣的问题上,也应该贯彻这样的思想.我们的数学教育,不仅要使数学学习成绩好的学生对学习数学感兴趣,同时还特别要重视对于数学成绩一般和不好的学生的数学学习兴趣.让所有的学生都对学习数学感兴趣,这是一个非常困难的目标,却也应该是数学教学追求的目标,我认为,达到这个目标的最主要的途径,一是数学在实际中广泛应用的展示,二是数学美的展示.
标签:数学论文; 课程标准论文; 数学文化论文; 数学课程标准论文; 图形推理论文; 教学过程论文; 逻辑能力论文; 关系逻辑论文;