“空间向量的数量积运算”教学设计与反思,本文主要内容关键词为:向量论文,教学设计论文,数量论文,空间论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
笔者有幸参加了2015年浙江省高中数学课堂教学评比活动,并得到了与会专家和老师的一致认同,获得了课堂教学评比一等奖.以下是本节课的教学设计和课后的教学反思,以此抛砖引玉,供同行参考. 一、教学内容解析 向量兼具“数”和“形”的双重形态,是沟通代数和几何的桥梁.空间向量为处理立体几何问题提供了一个新的视角,是解决三维空间中图形位置关系与度量问题的有效工具. 空间向量的数量积运算,是人教社A版《数学2-1》中继空间向量的加减运算、数乘运算之后的又一种运算,是平面向量运算向空间推广的一个实例.在平面向量的夹角、长度概念和数量积定义的基础上,通过类比的方式,得出空间向量数量积的相关概念、运算律,并举例说明了空间向量数量积运算在处理立体几何中垂直关系中的重要作用,充分体现了数学的应用价值. 做好“类比”、抓住“本质”、学会“方法”、奠定“基础”是本节课的教学主线.通过类比发现“任意两个空间向量都是共面的”,抓住本质确定“空间任意两个向量的数量积本质上就是平面向量的数量积”;基于空间向量的数量积运算,学会用数量积解决垂直问题的方法,体会化归转化与数形结合思想另外,本节课内容为后续学习坐标表示下的向量方法解决空间角、长度、垂直等问题奠定了重要基础. 二、教学目标设置 教学指导意见对本节内容的要求是:理解空间向量的长度和夹角的意义;理解空间向量的数量积的意义及其运算律;能利用空间向量的运算解决直线和直线垂直、直线和平面垂直、两点间距离或线段长度等相关问题结合教学实际,制定教学目标如下: (1)通过小组合作、自主探究、交流分享,在类比中归纳得出明确的认识:空间任意两个向量都是共面的,空间任意两个向量的数量积就是平面向量的数量积;学生能进一步理解和掌握空间向量数量积的相关概念及运算. (2)经历例1、2的分析、求解过程,学生能初步体验空间向量在解决立体几何有关问题中的重要价值,能基本掌握用数量积处理空间中线线、线面垂直问题. (3)在解决具体问题的过程中,学生能强化数学应用意识,感悟数学思想(数形结合、化归转化等)的魅力. 三、学生学情分析 学生在经历空间向量的概念及线性运算之后,已感受空间向量与平面向量之间的内在联系,体会并运用类比的方法学习空间向量及其运算由于空间任意两个向量必共面,因此空间向量在本质上与平面向量是一致的.同时学生在平面向量的学习中,已经认识到平面向量的数量积在判定位置关系(垂直)、角与距离的计算中的应用价值,这为研究空间位置关系及相关度量提供了类比前提,即在平面向量的夹角和向量长度概念的基础上,类比引入空间向量的夹角、长度的概念和表示方法,类比平面向量的数量积的运算得到空间两个向量的数量积的概念和计算方法、运算律. 空间向量的投影以及数量积的分配律,代数形式上与平面向量中完全一样,但是在几何直观上又有些许不同.这是学生在类比归纳中的一个难点,需要适时铺垫引导,逐个突破. 数量积在解决立体几何中直线和平面垂直、直线和直线垂直等问题的过程中,学生对几何元素与空间向量之间的对应及如何用空间向量表示所涉及的几何元素可能困难较大,这是将立体几何问题转化为空间向量问题的关键. 基于教学内容和学情分析,本节课的重点和难点确定如下: 重点:通过类比归纳得出空间向量数量积的概念及运算,能利用数量积运算解决空间垂直问题. 难点:理解空间向量的投影以及数量积的分配律;用空间向量表示线线、线面垂直,并深刻体会“没有运算的向量只能起到路标作用,有了向量的运算力量无穷”. 四、教学策略分析 (一)本节课的框架设计 为了实现教学目标,我按照以下框架安排本节课的教学: 环节1:问题引入,提出概念; 环节2:自主探究,交流分享; 环节3:例题赏析,感悟“运算”; 环节4:归纳总结,作业巩固. (二)对教学方法和手段的分析 本节课的教学主线是:做好“类比”、抓住“本质”、学会“方法”、奠定“基础”教学过程中,充分发挥学生的主体作用,践行“学生先行,交流呈现,教师断后”的教学理念,凸显“以学生为主体的教,在教师引导下的学”的授课模式.通过问题引入、阅读理解、表格填写、交流分享等途径,让学生“动起来”,让课堂“活起来”.在概念、运算律的建构中,始终坚持让学生主动进行类比与归纳;在例题赏析中,注重引导学生建立“已知”与“待求”间的“关联”.借助向量工具适时转化难点,设置问题串适时突破难点,注重渗透数形结合、化归转化的数学思想通过课堂小结与感悟,让学生能对课堂所学有持续的思考,激发学习的热情,进一步增强教师引领的辐射作用. 另外,根据教学需要,对教材内容和呈现方式作了如下设计: (1)设置“自主探究,交流分享”环节,并以表格的形式呈现空间与平面向量数量积的对比,增强对比的效果,突出两者的共性,有利于空间向量数量积的知识构建. (2)以表格形式呈现课本第90页思考题中的3个问题,概括为“可约、可除、可结合”三个问题,增强学生对三种运算的直观理解. (3)以例1、例2为载体,强化学生对“数量积运算”价值的认识.通过“课堂感悟”,引导学生去体会“没有运算的向量只能起到路标作用,有了运算的向量力量无穷”. (4)制作实用的多媒体课件,设计合理的板书,辅助课堂教学的有效开展. 五、教学过程 (一)问题引入,提出概念 之前刚刚学习了空间向量的加减、数乘运算,通过学习发现:空间向量的加减、数乘运算与平面向量的加减、数乘运算是完全一样的.必修4中已经学习了平面向量的数量积运算,从定义、几何意义、运算律等方面认识了数量积运算,那么空间向量的数量积运算会是怎么样的呢? 设计意图:通过回顾加减、数乘运算学习经验,让学生体会空间向量与平面向量的内在联系,暗示学生运用类比的方法学习空间向量的数量积运算等借此,提出“空间向量的数量积”的概念,为后续自主探究、交流分享环节作好铺垫. (二)自主探究,交流分享 1.小组合作,自主探究 分组:4人小组,确定1名组长.组长负责组织讨论、记录、汇报讨论结果. 引导:呈现研究平面向量数量积运算的几个维度,暗示学生探究的方向.空间矢量定量产品操作的教学设计与思考_平面向量论文
空间矢量定量产品操作的教学设计与思考_平面向量论文
下载Doc文档