摘要:随着当前社会的不断发展,电力系统的不断应用使得当前在电力保护中的要求也在不断的提高。电力系统的飞速发展对继电保护不断提出新的要求,这就使得在当前电气设备应用中继电器保护技术要求日益提高,本文就当期那电气主设备继电器的保护技术和措施进行分析与探讨。
关键词:电气主设备;TA饱和;光电压互感器;继电保护;技术分析
随着经济的快速发展和科学技术的进步,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。电气设备的继电保护主要是研究电力系统故障和危及安全运行的异常工况,以探讨其应对突发事故的措施。对于电力系统的正常和安全运行起到了举足轻重的作用,在电力资源日益紧张的今天,加强对电气主设备继电保护技术的研究,具有一定的现实意义。
1 电气主设备保护的现状
对电气设备中的继电保护进行研究,主要是针对电力系统中的各种故障及可能危及到电力系统安全运行一些不良情况而言的,通过研究相关的对策反事故来实现其自身自动化保护的一种有效措施。在实践中,主要是用一些有触点的继电器来实现对电力系统及其各元件,比如变压器、变压器以及输电线路的保护,以免遭受各种损害,因此称之为继电保护。较之现代高压或超高压线路的继电保护而言,传统的发电机、母线、变压器以及并联电抗器等大型继电保护装置,总是表现出一定的滞后性。
1.1 主设备保护的双重化配置和主后一体化趋势
一般而言,双主双后保护模式主要是针对只有一个被保护对象的情况而言的,需要配置上两套相互独立的保护设备。每一套继电保护装置都包含着主后设备保护,且每一套保护系统都是由两个中央处理器构成的。两个中央处理器系统之问还可以进一步实现自检与互检;出口采用的是两个中央处理器模式,同时还将一个“与”门作为出口。从形式上来看,该方案概念比较清晰,而且能够有效地解决了继电保护中的拒动或者误动之矛盾。
1.2 主设备保护的新原理
从实践来看,TA饱和问题已经成为当前电气主设备继电保护过程中必要面对的一个客观难题,因大型发电机设备的变压器组具有较大的容量,因此故障电流的非周期性分量衰减的时间常数相对就会增大,很可能会导致差动保护不同侧的TA传变暂时出现不一致或者饱和现象。对于大型发电机设备的变压器而言,其每一侧的TA性质也不尽相同,这也非常容易导致TA饱和,进而造成区外故障时的差动保护误动;当母线的近端出现故障时,则TA会出现严重的饱和现象。针对 TA饱和问题,国内外也提出了一些识别 TA饱和的办法:采用附加额外的电路来检测 TA饱和,缺点是现场工程应用很不方便;提高定值,缺点是降低了内部故障的灵敏度;采用流出电流判据的标积式比率差动,理论计算表明当发电机发生某些内部故障时,也有流出电流,存在拒动的可能性。目前来看,电气主设备继电保护中主要有常规两折线和三折线比率差动、采样值差动以及标积制动式的差动等几种类型;而对于励磁涌流而言,目前电气工程中所用到的励磁涌流判别原理,主要是从涌流的波形和短路电流的波形上来判断的,因为其具有不同的特征,所有可以区分出励磁涌流和短路情况,实践中,当不同的涌流判别原理同时具有故障合闸时,总是会表现出继电保护动作延时或者动作用时离散度比较大等缺点。
2 主设备保护的发展趋势
2.1 保护装置的一体化发展
1)充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。
2)主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。
期刊文章分类查询,尽在期刊图书馆
3)主后一体化装置便于保护双重化的实现。主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。
2.2 新型光电流互感器、光电压互感器的应用
传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。
新型光电流互感器(OTA)、光电压互感器(OTV)相对于电磁式TA具有明显的技术优势:不存在饱和问题,频率响应宽,动态范围大,在很大的电流变化区间内保持线性变换关系;实现了强电和弱电的完全绝缘隔离,具有很强的抗电磁干扰能力;不存在二次开路的问题,二次输出值较小,适合与保护直接接口。因此其将成为主设备微机保护的发展趋势。
2.3 信息网络化
随着科技的进步,保护装置也逐渐实现保护信息化、网络化设计。网络化发展不断加快的同时,电力企业自然会使用计算机操作机器设备,实现电力企业网络化发展模式,可有效的提高电力企业的工作效率,对提高电力企业的经济效益具有重要作用。电气主设备继电保护装置也会应用计算机来进行管理,建立电气主设备保护网络系统。比如建立主设备保护网络监控系统,使主设备保护具有通信功能,进而通过网络监控系统实现主设备继电保护装置的动作管理!故障数据处理以及电流定值整定等,实现了电气主设备继电保护的网络化管理。电力企业通过建立电气主设备保护网络系统使电气主设备具有网络通信功能,可以清楚的看到主设备继电保护装置的运行状况,当主设备继电保护装置出现问题时可以通过监控系统及时发现,且能够有效的处理问题,以保证主设备继电保护装置的正常运行。
2.4 故障分析技术
新一代主设备保不仅都具有自己独特的故障录播功能,而且要采用故障分析技术。如果应用故障分析技术在电气主设备继电保护装置中,主设备继电保护装置就会具备故障录波功能。故障录波功能可以将继电保护装置发生故障的整个过程准确的记录下来,也能够准确的记录继电保护装置所做的每个保护动作。然后将主设备继电保护装置出现故障的信息发送到电气主设备继电保护网络监控系统上,通过分析继电保护装置的保护动作是否准确,进而准确的找出故障发生的真正原因。
2.5 自适应技术、智能技术和数字技术的发展
电气继电保护装置应用自适应技术能够适应电力系统发生变化的情况,进而有效的提高了主设备继电保护的性能。在目前所有应用的主设备继电保护装置中已经体现了自适应功能。比如变斜率比率差动保护中的制动性能就体现了自适应功能。在电气主设备继电保护装置中实现自适应技术,必须要有通信技术和信息技术的配合,才能真正发挥电气主设备继电保护装置的自适应功能。由此可见,电气主设备继电保护装置在未来的发展过程中很可能会应用自适应技术应技术。
3 结束语
随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。为此,必须从电力系统全局出发,进行电气设备继电保护的相关研究。
参考文献:
[1]王维俭.电气主设备继电保护原理与应用[J].北京:中国电力出版社,1996.
[2]沈全荣,何雪峰.大型发变组微机保护双重化配置探讨[J].电力系统自动化,2002,10.
[3]黄惠容.电气主设备的继电保护技术发展现状与趋势[J].科技促进发展,2011(02).
[4]汪康辉.电气主设备继电保护技术的应用与发展[J].北京电力高等专科学校学报:自然科学版,2012(02).
[5]易冠文.浅谈电力系统中电气主设备继电保护技术现状与发展[J].中国科技博览,2012(09).
论文作者:田志强
论文发表刊物:《电力设备》2017年第10期
论文发表时间:2017/8/8
标签:主设备论文; 保护装置论文; 电气论文; 继电保护论文; 继电论文; 故障论文; 技术论文; 《电力设备》2017年第10期论文;