聚羧酸系高效减水剂的发展与现状论文_侯严花

聚羧酸系高效减水剂的发展与现状论文_侯严花

连云港泰广混凝土有限公司 江苏连云港 222000

摘要:高效减水剂是高性能混凝土不可缺少的一种组分油于其超分散作用特别是达到非常低的水胶比后使混凝土能够保持高的流动性。目前,我国传统的高性能减水剂包括改性木钙、蔡系、三聚氰氨等,这些都难以满足高性能混凝土对减水剂性能的要求而聚竣酸系高效减水剂的性能更优越河根据实际情况配制各种不同强度等级的混凝土。所以推广应用聚竣酸系高效减水剂是混凝土向高性能化方向发展的必然要求。

关键词:聚羧酸系;高效减水剂;发展

目前市场上常用的几种减水剂为:木质素磺酸钠盐减水剂、萘系高效减水剂、脂肪族高效减水剂、氨基高高效减水剂、聚羧酸高效减水剂等。在众多减水剂中,具有疏形分子结构的聚羧酸系高效减水剂因其减水率高(最高减水率可达35%以上)、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为国内外研究和开发的重点。

一、聚羧酸减水剂特点

(1)保坍性好,90min内坍落度基本不损失;

(2)在相同流动性情况下,对水泥凝结时间影响小,可很好的解决减水、引气、缓解、泌水等问题;

(3)与水泥及其它种类的混凝土外加剂相容性很好,与传统高效减水剂如萘系减水剂复配可产生良好的叠加效应。

(4)合成高分子主链的原料来源较广,单体通常有丙烯酸、甲基丙烯酸、马来酸、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟乙酯、乙酸乙烯酯、烯丙基磺酸钠等。

(5)使用聚羧酸高效减水剂,可用更多的矿渣或煤粉灰取代水泥,降低成本。

(6)分子结构自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大。

(7)局和途径多样化,如共聚、接枝、嵌段等。合成工艺比较简单,由于不使用甲醛,不会对环境造成污染。

二、聚羧酸类高效减水剂的合成方法

1大分子单体法

该法先酯化后聚合,即首先通过酯化反应制备出有聚合活性的大分子单体(通常为甲氧基聚乙二醇甲基丙烯酸酯),然后将一定配比的单体混合在一起,直接采用溶液聚合的方法聚合得到成品。这种合成工艺看起来很简单,但中间分离纯化过程比较繁琐,成本较高。日本触媒公司采用短、长链甲氧基聚乙二醇甲基丙烯酸酯和甲基丙烯酸3种单体直接共聚合成了1种坍落度保持性良好带有聚醚侧链的混凝土外加剂。

2大分子反应法

该法先聚合后酯化,即首先制备出已知相对分子质量的聚羧酸,然后在催化剂的作用下,采用已知相对分子质量的聚醚于较高的温度下通过酯化反应对聚羧酸进行接枝。但是由于聚羧酸产品种类和规格有限,调整其组成和相对分子质量较困难,同时由于聚羧酸和聚醚的相容性不好,酯化实际操作困难,随着酯化反应的进行,水分不断溢出,会出现相分离现象。如果能选择一种与聚羧酸相容性好的聚醚单醇或二元醇就可以解决相分离问题。利用单体苯乙烯和马来酸酐先聚合,然后对共聚物进行磺化和酯化的方法制得了一种聚羧酸减水剂,该减水剂具有较高的分散性能和优良的保坍性能

3原位聚合与接枝

该法集聚合与酯化于一体,即以聚醚作为羧酸类不饱和单体的反应介质,在羧酸类不饱和单体发生聚合的同时发生酯化反应,从而避免了聚羧酸与聚醚相容性不好的问题。把丙烯酸单体、链转移剂、引发剂的混合溶液逐渐滴加到相对分子质量为2000的甲氧基聚乙二醇的水溶液中,在60℃反应45min后升温到120℃,在N2保护下不断除去水分(约50min),然后加入催化剂升温到165℃,反应1h,进一步接枝得到成品。这种方法虽然可以控制聚合物的相对分子质量,合成工艺简单,生产成本低,但一般只能选择含羧基的单体,否则很难接枝,且这种接枝反应是个可逆平衡反应,反应前体系中已有大量的水分存在,其接枝率不高,且难以控制,分子设计比较困难。

期刊文章分类查询,尽在期刊图书馆

三、聚羧酸高效减水剂发展趋势

1高性能化

为满足高性能混凝土发展的需求,聚羧酸减水剂应继续向低粘度、高分散、高保坍等高性能化方向发展。首先在实验室内通过超支化聚合物理论,制备出了一种新型的超支化型混凝土超塑化剂。与传统聚羧酸超塑化剂相比,这一新型的超支化聚合物,可以更好地控制新拌混凝土的流变学性能,也具有更佳的适应性和低粘性。国内外先后提出在聚羧酸盐主链上引入“性离子类”,从而提高外加剂的饱和掺量,实现高分散性。另外,提出将羧酸基团进行改性,调控其吸附速率和在水泥强碱性环境下的水解速率,从而达到高保坍的目的。

2功能化

随着预制混凝土、大体积混凝土、钢筋混凝土的应用及不断涌现的问题,在对聚羧酸构效关系和作用机理的深入认识的基础上,设计和合成具有特殊功能的分子结构,使其具有超早强、减缩抗裂和阻锈等多种功能,有利于进一步推动混凝土的技术进步和可持续发展。采用高分子量聚氧乙烯支链结构合成了新型纳米结构的聚羧酸盐类减水剂,可将水泥水化放热峰提前5h左右,用于预制混凝土构件的生产或用于在冬季低温环境中施工的混凝土工程。日本和中国先后有人提出在聚羧酸主链上接枝不同侧链长度的聚醚,可以起到减缩抗裂功能。设想将具有减缩、阻锈功能烷基聚醚和提供空间位阻效应的聚醚接枝到共聚物主链中,从而实现化学外加剂的多功能化。

3绿色环保化

目前一部分聚羧酸减水剂的制备过程仍然需要使用挥发性有机溶剂作为带水剂接枝聚醚侧链,该酯化过程存在温度高、加工时间长的缺点,而且有机溶剂的使用不可避免会对生产工人和环境造成不利影响,并且还会不利于可持续发展。因此目前聚羧酸系减水剂的制备合成过程及产物正在向无毒、无污染、节能等方向努力,达到绿色环保化。

4优化工艺过程

对现有的聚羧酸减水剂的性能进行改进,优化工艺过程。由于聚羧酸系减水剂的合成过程包括酯化和聚合两个部分,而且用价格较低的聚乙二醇进行酯化时容易发生交联,因此,可以通过研究反应溶剂、反应物浓度、反应温度、反应时间等因素的影响,寻找能最大限度地降低交联反应,以适合工业化生产的条件,从而降低生产成本和施工成本。

5开发系列化产品

聚羧酸系减水剂要想获得更加广泛的应用就必须加快品种的系列化开发进程,开发出一系列具有性能特点的聚羧酸系聚合物产品。对早强、缓凝、泵送等不同性能的需求,无法生产出相应的聚羧酸母体,这一点是制约聚羧酸系减水剂广泛应用与发展的潜在原因。此外,最好开发用于土木工程中预拌混凝土专用的聚羧酸系减水剂。其不需要很高的减水率,但能保证混凝土的工作性好、坍落度损失小、保水性好、不容易出现泌水离析等现象,且对混凝土原材料(尤其是含泥量)变化不敏感。开发具有特定功能的聚羧酸系减水剂也是今后的发展方向,例如低引气性的聚羧酸系减水剂母液、具有减缩功能的聚羧酸系减水剂等。

6研究分子结构设计

聚羧酸高性能减水剂具有“梳状”的结构特点,梳型侧链连着阴离子、非离子,是一种混合型表面活性剂。若改变单体的种类、比例和反应条件,可生产各种不同特性和性能的聚羧酸系高效减水剂。利用聚合物分子设计,可以控制聚羧酸系高效减水剂中梳型聚合物主链链长与官能团、支链链长等,消除其结构对混凝土的减水、引气、保坍、缓凝等作用的影响。

7重视复合型减水剂

目前国内市场上减水剂的品种较多,但有些品种受其结构制约,对混凝土的保坍性不佳,如萘系减水剂等。聚羧酸系减水剂虽保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制。研究复合型高效减水剂,可充分发挥不同类型减水剂的优点,优化混凝土的各项性能,提高其应用潜力,增加工程应用中减水剂的选择性。这对我国混凝土材料的发展和建设工程技术的进步具有重要的现实意义和经济意义。

结语

聚羧酸系高性能减水剂现已由第一代聚羧酸系减水剂(甲基丙烯酸/烯酸甲酯共聚物),第二代聚羧酸系减水剂(丙烯基醚共聚物)发展到第三代聚羧酸系减水剂(酰胺僦亚胺型),并正在研发第四代聚酰胺一聚乙烯乙二醇支链的新璎高效减水剂。开发减水率更高、性能更优异、适应性更强的聚羧酸系高性能减水剂是今后发展的主要方向。

参考文献

[1]李真,刘瑾,等。水溶性聚丙烯酸类高效减水剂的合成及表征[J].新型建筑材料,2007(2):50-53.

[2]鲁郑全,刘应凡,等。聚羧酸系高效减水剂的合成[J].河南科学,2009,27(5):539-542.

论文作者:侯严花

论文发表刊物:《基层建设》2017年第34期

论文发表时间:2018/4/4

标签:;  ;  ;  ;  ;  ;  ;  ;  

聚羧酸系高效减水剂的发展与现状论文_侯严花
下载Doc文档

猜你喜欢