浅谈数形结合在高中数学各个知识模块中的应用论文_黄春波

浅谈数形结合在高中数学各个知识模块中的应用论文_黄春波

黄春波(四川省屏山中学 四川 屏山 645350)

摘要:“数形结合”这一贯彻在高中数学教学始终的解题思想方法,其本质是“数”与“形”之间的相互转换。在高中数学教学中,通过有效的“数形结合”思想方法的运用可以使学生在学习过程中绕过障碍。其中,在高中数学里,数形结合思想方法的运用很普遍最具典型的是平面解析几何。

关键字:高中数学;数形结合;应用

中图分类号:G628.88 文献标识码:A 文章编号:1671-5691(2019)03-0182-01

“数”与“形”作为数学中最古老最重要的两个方面,一直就是一对矛盾体。正如矛和盾总是同时存在一样,有“数”必有“形”,有“形”就有“数”。华罗庚先生曾说过:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。切莫忘,几何代数统一体,永远联系,切莫分离!”寥寥数语,把数形之妙说得淋漓尽致。“数形结合”作为数学中的一种重要思想,在高中数学中占有极其重要的地位。“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时,揭示其几何直观意义的解决数学问题的方法。因此,“数形结合”这一数学方法的有效运用,在高中数学教学中发挥着非常奇妙的巨大作用。数形结合思想,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维相结合,通过对图形的认识、数形结合的转化,可以培养思维的灵活性和形象性,使问题化难为易、化抽象为具体。数学思想方法很多,下面我结合自己的教学实践,以数形结合思想为例,谈谈在教学中是如何使用教材使学生的数形结合能力逐步得到提高的。

一、直观理解抽象概念

在教学高中数学的集合运算这一节的内容时,学生刚接触比较难以完整的理解集合的概念,这时就应该有效利用数形结合思维,加深学生对于高中数学第一节内容的理解。首先是集合之间的关系,学生会感到难以理解。教师应该先让学生从字面上理解集合运算的意思,然后利用维恩图像感受集合运算的真正概念,这样的数形结合利用就可以有效帮助学生正确理解高中数学知识。再通过其他的角度理解集合,从根本上渗透数形结○ 数学教学与研○ 数学教学与研究合的思维模式,更有助于学生对数形结合思想的理解。

例如:实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

期刊文章分类查询,尽在期刊图书馆

二、函数解析式的代数分析形成的数形结合思想

函数图像的几何特征与函数性质的数量特征紧密结合,有效揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法。因此,既要从定形、定性、定理、定位各方面精确地观察图形和绘制图形,又要熟练地掌握函数图像的平移变换、对称变换。在解题中,我们应根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,解决数的问题;或将形的信息全部转化成代数信息,削弱或消除形的推理部分,使要解决的形的问题转化为数量关系的讨论。

三、数形结合的基本概念和原理以及应用

高中数学经过新课程教学改革后,让学生懂得利用学习技巧,正确地掌握学习方法,有完整的学习思维成为高中数学教学的根本目标。所以数形结合的思维是要为学生所利用,而不是努力学习数形结合思维完成考试答卷。让学生理解正确的数学概念,体会数学结论的本质,再通过验证和分析,对概念中所拥有的数学技巧进行讲解,就是高中数学教学的根本价值。随着我国的不断发展和数学教学的不断改革,高中数学教学也在不断地进行完善,原有的基础知识也应该做出进一步调整。新课程把数形结合思想作为中学数学中的重要思想,要求教师能充分挖掘它的教学功能和解题功能。新课标强调将一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)都要贯穿于高中教学的始终。由于数学的高度抽象性,要注重体现概念的来龙去脉,在教学中要引导学生经历从具体实例中抽象出数学概念的过程。

四、数形结合思想在解析几何中的应用

解析几何数学题通常所要涉及的知识点众多,所要求的不仅仅是知识点的套用,还要将知识点有效地进行搭配利用。数形结合的思维在解析几何中就得到了完整的体现,通过数形结合的思维,可以将动态数学语言与直观的几何图形进行结合,从而有效地达到解决问题的目的,这也就是数形结合思想在解析几何中的有效应用。有效的“数形结合”方法的运用,往往会使复杂问题简单化、抽象问题直观化,从而达到优化解题途径的目的。数形结合的解题思想方法,其本质是“数”与“形”之间的相互转换。“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时,揭示其几何的直观意义的解决数学问题的方法。

总之,“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时揭示其几何的直观意义的解决数学问题的方法。数形结合包括“以数辅形”、“以形助数”两个方面。同时有效的“数形结合”方法的运用,往往会使复杂问题简单化、抽象问题直观化,从而达到优化解题途径的目的。数形结合在高中数学教学的过程中一直是热门的技巧及教学方向,通过有效的数形结合思维教学,可以帮助学生更好地理解高中教学内容,让学生有更扎实的基础面对未来的学习生活。本文就数形结合在高中数学中的有效利用做了研究,希望对广大教育工作者有所帮助。

参考文献:

[1]孙天惠.浅谈数形结合在高中数学解题中的应用[J].读写算(教师版):素质教育论坛,2015(47).

[2]王晓红.数形结合思想在高中数学函数教学中的应用分析[J].俪人:教师,2016(3).

[3]何红军.数形结合方法在高中数学中的应用[J].数学学习与研究:教研版,2015(7):44.

[4]兴智群.高中数学教学中数形结合方法的应用分析[J].理科考试研究,2015,22(9):21.

论文作者:黄春波

论文发表刊物:《教学与研究》2019年3期

论文发表时间:2019/1/9

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈数形结合在高中数学各个知识模块中的应用论文_黄春波
下载Doc文档

猜你喜欢