摘要:随着经济的快速发展,社会的不断进步,变电运维目的是检测出变电设备的风险或问题,为系统的稳定运行提供保障。本文分析了带电检测技术在变电运维中的应用优势,并介绍几种变电运维中常用的带电检测技术,探讨带电检测技术的实际应用。
关键词:带电检测;变电运维;应用分析
引言
现阶段,我国加大力度建设城镇一体化,加上市场经济发展以及经济全球化影响,国内各个行业对电力需求也在不断提高。我国各大电力部门主要是利用大面积、广泛覆盖的输电线路将电能传输到变电站,然后由变电站传输给千万个电力用户。因此变电设备成为保障用户用电稳定、电力部门运行稳定的关键纽带,是不可或缺的电力系统组成部分,因此电力部门管理人员必须加强对变电设备运行与检测工作的重视。鉴于变电站承载着高负荷的电力转送任务,技术人员必须定期对其进行检测与维修,这样才能更好的保障整个电力系统的运行稳定以及广大用户用电的稳定。
1变电运维的必要性
电力系统主要包括发电、输电、变电等主要的环节:电是从发电厂发出,之后通过大面积的输电线路被传输到变电站,最后再由变电站输送到各个居民用户及工业用户,从中可以看出变电运维直接决定着电力系统的运行质量,因此为了保障正常的电力供应,必须定期不定期对变电设备进行检测。简单来说,变电运维就是变电设备的运行维护,主要由变电运维操作站、变电运维队两大部分组成。变电运维操作站主要负责电站的电力运行管理,主要是在值班人数较少甚至是无人值班的情况下对电站的电力运行开展具体的管理工作;运维队则是指基站巡视及检修队伍,分为操作队和巡检队。变电运维建立在电网公司大检修的工作思路之上,在注重变电日常运行的同时加强变电检修工作从而预防变电设备的运行故障,提升供电质量和效率。
2变电运维中常用的带电检测技术
2.1红外线检测技术
红外线检测技术主要应用于对设备测温。变电设备在运行过程中会因为某些原因局部温度升高过快,采用红外线成像技术进行检测可及时发现这一问题。红外线检测技术的工作原理如图1所示。但红外线自身的穿透能力较差,可能无法发现复杂电气设备内部的故障问题,对故障发生位置距离设备表面较远时,还需使用其他检测技术进行检查。
2.2暂态电压脉冲检测技术
在设备的局部放电过程中伴随着电磁波的产生,电磁波可以通过检测设备传导到地面,进而产生暂态电压脉冲。利用这种现象,采用专用检测仪器对变电设备进行带电检测,可以有效发现开关柜、配电网和环网柜等部分的故障问题,如图2所示,开关柜局部放电现场检测过程。使用电压传感器捕获电压时间差,可以用来确定局部放电的具体发生位置,并对其放电强度和频率进行检测。通常放电位置间距越小,电压传感器采集到的暂态电压数值就越高,此外暂态地电压信号还与局部放电活跃程度有关,使用dB/mV表示两者关系。
2.3避雷器检测技术
避雷器检测技术一般被用于无间隙金属氧化物的避雷器带电检测,可以在避雷器运行过程中对其运行参数进行检测,及时掌握避雷器运行状况。在避雷器的运行参数中,总泄露电流值能够反映避雷器绝缘能力,阻性泄露电流值能够反映避雷器绝缘质量,因此掌握其运行参数可以确保避雷器的绝缘状态符合要求。避雷器的带电检测受多种影响因素干扰,为保证检测结果的准确性,需要采用补偿法对阻性泄露电流进行测量,抵抗外部干扰,为设备调试提供可靠参考。避雷器检测技术与红外检测数据的综合使用,还可以对设备内部受潮情况进行判断,如有必要,需要停电检修。
期刊文章分类查询,尽在期刊图书馆
3带电检测技术在变电运维中的应用
3.1脉冲电流法
现阶段,我国各个电力部门普遍使用的局部放电检测方法就是脉冲电流法。需要注意的是该方法也适用于直流条件下的局部放电检测。在实际运用过程中,技术人员一定要根据变电设备运行的实际情况和需求,结合自身的经验合理采用脉冲电流法,这样才能充分发挥该项检测方法的作用,进一步提高带电检测工作的效率与质量,保障整个检测数据的准确性,为下一步环节开展提供重要的参考依据。
3.2红外线检测技术
技术人员可以在带电设备制热效应基础上利用红外检测技术,通过特定的仪器获取设备表面发出的红外辐射信息。技术人员利用辐射信息判断辐射值是否存在偏差,进而判断出设备运行是否存在问题,找出问题所在。该技术主要是利用特定机器获取辐射信息,不需要停电,同时即使是远距离也可以对收集到的红外线信息进行有效分析。因此,红外线检测技术在电力设备带电检测中应用价值高,也是各大电力部门普遍适用的带电检测技术。需要注意的是技术人员在利用该项技术对变电设备进行检测时一定要严格按照相关的技术要求和流程进行操作,进一步提高检测数据的精确性,将各种问题对设备损耗降到最低。
3.3无线电干扰电压法
电晕放电的情况下会产生电磁波,而这种电磁波能够通过无线电干扰电压表来进行检测,从而对电气设备的局部放电进行检测,国外目前仍有通过无线电干扰电压表来进行检测局部放电,而在国内常用射频传感器检测是否存在局部放电,所以这种检测方法在国内又叫射频检测法一般常用电容传感器、Rogowski线圈电流传感器和射频天线传感器等。Rogowski线圈电流传感器发源于20世纪80年代的英国,1996年吴广宁等人对该传感器进行了不少改进,设计出宽频电流传感器,这种传感器能够对大型电机局部放电进行在线监测,具有很强的实用性,并获得了国家专利,这种在线检测传感器被应用在陕西秦岭发电厂、兰州西固热电厂;此传感器后来被用于大型汽轮发电机-变压器组,并在元宝山发电厂的运用中取得良好的效果。RIV方法不仅能定性检测局部放电现象,亦可通过电磁信号强弱对电机线棒和无屏蔽层的长电缆进行局部放电定位;Rogowski线圈传感器在实际运用中能够定量检测放电强度,且具有多达30MHz的测试频带,因此实用价值大。
3.4介质损耗分析法(DLA)
局部放电能够对绝缘材料产生多大的破坏作用,主要取决于局部放电消耗的能量,局部放电消耗能量越大,其对绝缘材料的破坏越明显,在这种情况下,放电消耗功率的测量自然受到人们的重视。对于大多数绝缘结构而言,绝缘中气隙的数目会因电压的升高而增加。此外局部放电将对介质造成损坏,并导致tanδ明显升高,因此可通过测量tanδ来确定局部放电能量,进而确定绝缘材料是否受损。该分析法对低气压中存在的辉光或者亚辉光放电具有很好的检测效果。这种放电却有很大的能量消耗,进而导致Δtanδ很大,故可以通过电桥法检测Δtanδ,进而判断变电设备运行的状态。
3.5超高频(UHF)局部放电检测技术
测试仪器的1GHz测量频带成为现实之后,这种强大功率的测试仪器能够成功测试出GIS中的初始局部放电脉冲。在此强大的频带下,可通过衰减噪声信号的方式降低噪声对放电检测的影响,从而更大限度的再现局部放电脉冲,以此深化对局部放电的机理研究。根据频带的宽窄,可分为超高频窄带检测、宽频带检测。前者中心频率高达500MHz,带宽MHz,后者带宽可达GHz。由于超高频超宽频带检测技术能够对噪声起到明显的抑制作用,同时又具有信息量大的优点,因而使用较多。
结语
带电检测在变电运维中有极高的使用价值。使用红外线检测技术可以发现设备的局部温度异常,及时控制故障问题。采用暂态电压脉冲检测技术可以及时发现局部放电异常,此外还可以采用避雷器带电检测技术对避雷器运行状况进行实时掌控。通过使用这些带电检测技术,可以有效提升变电维护效率,将系统故障发生几率降至最低。
参考文献:
[1]陈慧群.变电运维中红外测温技术的应用分析[J].中国战略新兴产业,2017,(40):159,161.
[2]黄 怡,古丽•买买提.紫外成像技术在变电设备带电检测中的应用分析[J].科技经济导刊,2017,(20):71-72.
论文作者:祖丽胡玛尔•马斯曼1,艾克帕尔•尕
论文发表刊物:《电力设备》2018年第12期
论文发表时间:2018/8/8
标签:局部论文; 检测技术论文; 避雷器论文; 设备论文; 传感器论文; 电压论文; 红外线论文; 《电力设备》2018年第12期论文;