摘要:伴随着信息技术与计算机技术的不断革新,数字化技术正在不断更新换代,被巧妙的应用到各个领域,对于岩土工程勘察工作来说也同样如此。目前,在数字化技术发展的大背景下,岩土工程勘察技术得到了不断发展与进步,勘察质量大大提高,勘察数据也更为精确。本文阐述了岩土工程勘察数字化的特点,并对岩土工程勘察数字化实现的关键技术进行深入分析,以供参考。
关键词:岩土工程勘察;数字化技术;实现;研究
1岩土勘察数字化概述
现代工程建设规模不断扩大,岩土结构实现了空间大改造,为区域改良建设提供指导依据。为了更好地开发地质空间,岩土勘察必须引入高端科技为支撑,实现数字化作业模式才能提高建设水平。基于信息科技改良趋势下,数字技术在岩土工程中的应用更加普遍,利用建筑区设定数字勘察系统,对整个区域地质有了更加全面的了解。同时,利用数字勘察系统也实现了人工智能操作,满足了大规模的勘测区作业要求。岩土勘察系统设计以“数字化”为标准,为现场操作人员提供更为稳定的操控平台,减小了岩土工程勘测的作业难度。
2岩土工程勘察数字化特点
勘察工程控制自动化是岩土勘察发展必然趋势,以计算机为控制中心建立数字化调控平台,减小了岩土区域勘察工程调节的难度。结合岩土工程勘察模式,其数字化改造特点包括:
(1)动态性。动态监控是定向监控技术的综合应用,与定向传输系统相互融合使用,重点是实时跟踪用户数据传输情况,发现移动网络中的数字安全隐患。例如,移动通讯设备对其它数码设备的支持,如家电数码组合的客户端操作设备,基于隐私保护下可担当移动银行支付卡等,都需要采用动态监控技术作为防护保障。
(2)安全性。3G与4G技术彻底改变了人类信息社会,移动数字系统安全决定着3G与4G交替升级的最终成效,“静态监控”是数据安全防护最基本的方式。一般情况下,用户可选择静态检测程序自动扫描数字系统数据库,对一些常见恶意代码、波段信号等24h跟踪监测,发现异常情况及时汇报给用户,动静态监测结合是比较实用的技术形式。
(3)集群性。新时期集群化控制技术采用多功能处理模式,结合分布式计算机操控系统完成资源处理,降低了数字化勘察日常工作的难度。针对集群化控制平台运作流程,需实时调整原有的可控制平台,满足现代化计算机系统运行要求,这些都是未来数字计算机控制数字化勘察的必备功能。
3岩土工程勘察数字化实现的关键技术
3.1岩土工程勘察一体化
由于现代化信息技术的进步发展,岩土工程勘察和工程设计也得到了进一步的提升,然而限于一些客观因素和综合条件,岩土工程勘察设计还是存在不少有待改进的地方,如勘察资料太过地质专业化,不同领域专业设计内系统联系不足,封闭独立性强,尤其是数字化地图和设计系统之间缺乏贯通。为确保有效克服并改善这一现状,就必须要构建岩土工程勘察数字一体化系统,确保该多专业学科综合系统能够在统一框架结构和和谐工作环境中进行勘察、设计,确保其系统工程设计和具体实施的准确性和有效性能够大大提高,这也有利于提高岩土工程勘察设计工作效率和质量。
一般岩土工程勘察一体化主要包括纵横向一体化和松散密切一体化,所谓的岩土工程勘察一体化,则是借助岩土工程勘察测绘技术,依据其相应工程数据库系统,利用网络通信和CAD手段通过相应计算机软件来有机集成并整合工程项目所有相关信息,并构建相应的计算机辅助信息处理程序,使得岩土工程勘察能够由原来的手工完成转变为现代化CAD技术完成,这种岩土工程勘察一体化系统能够有效进行信息化数据采集、数字化综合处理勘察资料、自动化处理图文信息,高效智能化实现工程设计,由于该信息系统能够产生极大的社会价值和应用价值,在加上其创立构建的全新数据分析流程也需要结合工程项目实际工作进行,因此岩土工程勘察系统中的地理信息系统、地质统计信息、岩土工程建模、数据库系统等等也必须要充分引进市场先进计算机体系和行业经验信息,这样才能够使得该系统在实际工作中发挥其应有的价值和功能,才能够使得其岩土工程勘察设计工作做到最佳,从而给我国社会带去更多的经济效益。
3.2岩土工程场地方域数字化—地理信息系统
岩土工程场地方域数字化也就是岩土工程项目地理信息系统,简称GIS,基于互联网技术的Web GIS具备分布式应用结构、广泛的访问范围、独立的平台和成本低的系统,这门系统涵盖了计算机信息科学技术、地理学等多门学科知识,主要是在计算机硬、软件和系统信息科学理论支持下,科学综合分析和规范管理空间物理力学信息的地理数据,从而为该工程项目决策规划和管理研究提供所需信息,这对各种野外场地工程勘察测量工作极为有利。图1为专为岩土工程勘察设计开发的GIS应用软件界面。
图1 专为岩土工程勘察设计开发的GIS软件相关界面
虽然地理信息系统与岩土工程勘察设计一体化是不同领域,然而岩土工程力学信息里面包含了诸多地理信息,这些信息都与空间坐标相关,而后者工作必须在空间信息基础上进行设计分析、评估决策,也就是说岩土工程勘察设计需要全面地理信息的支持,而地理信息系统则就是有效采集、管理和分析各种空间信息的系统,因此将地理信息系统综合运用到岩土工程勘察设计工作中就能够充分借助GIS强大的数据采集、空间分析查询和管理效能来对岩土工程勘察设计、具体实施所需多种信息进行准确分析和高效管理,与传统勘察设计相比,地理信息技术应用优势十分明显:首先,地理信息系统采集处理数据快速且高效,其数据采集质量更高,数据来源更广;其次,岩土工程勘察设计数据内容复杂,形式多样,而地理信息数据库就能够准确描述表达空间实体,且其图形、图像和属性数据高度集成准确,从而为勘察设计信息、科学构建规范专业设计、分析评价和辅助决策模型提供了全面信息支持功能;然后,GIS还具备高效的可视化操作效能,从而使得岩土工程勘察设计可视化操作平台成为可能。
3.3岩土工程场地物性数字化——地质统计学
所谓的地质统计学主要是基于区域化变量理论基础上发展起来的,通过变异函数来研究分析不同空间随机分布的结构性数据以及它们之间的空间格局变异状况,然后对这些数据进行专业评估分析或者模拟相关数据离散波动性,该学科包含了典统计学和空间统计学知识,主要就是针对地理地质的特征进行分析。在岩土工程勘察设计中,其勘察岩土性质与地质历史和应力等密切相关,尤其是岩土物性指标与其所处空间位置有很大联系,具备一定的空间相关性,而且这种相关性能够在土层随意两点中体现出来,且两点距离越大,其相关性会随之减少,反之则增加。一般描述岩土空间自然相关性主要借助随机场模型,利用方差折减系数来联系岩土物性中“点”与其所处空间的变异性来综合反映计算岩土物性相关距离,在分析岩土工程可靠性时就要依据该数据,这也是岩土工程可靠度研究的重要基础计算分析工作。
岩土物性参数统计中,相关距离是其中重要的参数之一,一般土层剖面岩土物性完全相关距离以内,两点岩土物性完全相关,在限定相关距离意外,两点岩土物性相互独立,因此只要计算某工程特定土层岩土物性参数相关距离就能够直观了解该岩土地质物性状况,其相关距离计算方法主要有平均零跨法、相关函数法、递推平均法、回归模拟法等等,不同方法都有其相应的理论依据,其应用难易度和可靠度也都各有差异,各有其优势。
3.4岩土工程场地地层数字化——岩土工程建模
不同领域行业内都有其相应模型,如城市规划模型、机制模型、计算模型、演化模型等等,可以说所谓的模型就是依据数据实物、工程设计图纸与构思来按照其主要属性特性、比例和生态状况来构建相似物体图件,从而有效显示或揭示该类事物问题,而在岩土工程勘测工作中,其岩土工程地质模型就是利用工程性质将其工程岩土条件要上按照实际存在状况清晰简明表示在地图图形中,也就是能充分反映工程与地质条件相互联系依存的图示。借助该模型能够和那后拉近地质与岩土工程之间距离,有利于工程勘察设计人员深入掌握认识和准确应用岩土工程数据结果,能够使得岩土工程信息研究利用工作得到深化,使得工程岩土变形破坏等关键条件工作信息更准确,有效推动了地质工程结合后其岩土变形规律、物理效应等理论实用工作的快速进行,从而使得岩土工程信息研究工作方面得到更大的实质性进展。
不同的岩土工程其构造规模、起因、形态结构都有一定差别,而这些地质构造基本都可以抽象认为是点线面体等元素的集合,所谓的点元素集合就是指测点、线元素集合就是指地质剖面线、面元素集合则是指人工填土厚面等、体元素集合就是地下岩体形状特征。不同地质对象都有一定空间位置范围,具备一定形态地质特征,且与其他地质对象有一定空间关系,因此地质对象主要特征就是空间、属性以及空间关系等特征。一般地质对象能够依据地质体形状产状来分析其表征,然后根据地质对象的年代、岩性、空隙渗透率、含水和力学等不同属性参数来分析其空间分布状况,一般岩体地质对象空间上主要表现邻接、包含相离等拓扑关系。因此构建岩土工程模型就要基于岩土工程空间特征、岩土工程属性等之间对照关系来进行,其构建模型依据就是利用人们对外界客观信息认知的精炼和图示,主要根据工程信息数据来源、质量来筛选已有资料,目前是预测某个或者多个工程地质变量的空间变化规律。岩土工程地质建模工作主要通过精确表示工程地质体外表来描述该地质对象的建模方法,也就是表面模型法。
岩土工程地质建模有可视性和可修改性等特征。所谓可视性就是指对岩土工程地质模型进行可视化表述,能够利用三维景观模式、掀盖层三维景观模式、投影值线模式以及切面模式等来表达,可修改性就是指工程地质模型如果在勘探工作中获得了新的数据信息,必须要对原有地质模型进行细化,或者岩土工程项目研究人员在不断研究下对地质模型有了新的体会和领悟也需要修改模型。在应用岩土工程地质模型中,核心关键部分就是根据某组已知离散、分区数据按照相应数学逻辑关系推算其他位置点、区域数据的计算过程,也就是空间数据插值过程,其中样点范围包括局部拟合、整体拟合,空间数据插值则又趋势面法、按距离平方反比加权插值法。另外应用关键技术就是项目工程勘察参数结构设计和地层处理模拟,前者体现场地岩土物理空间拓扑关系,后者体现不同生成地层空间叠加分布。只要根据具体需求模拟研究区域某点虚拟钻孔土层状况和虚拟岩土工程剖面图和相关属性等值线,并完成所有等值线搜索即完成其相关应用。
3.5岩土工程数据库系统
构建全方位、多层次和多角度的岩土工程数据库系统,其勘察所获数据必须要包括以下几点信息:第一,所有建筑工程在其施工场地的地层信息,也就是地层年代、液化等级、沉积现象、特征周期以及液化指数;第二,岩土工程勘察地理范围内的所有地址勘察资料;第三,通过科学筛选、分析处理后的不同勘察点,也就是土层物理力学、地理物理力学以及环境物理力学等相关指标信息。只有基于这些信息才能构建科学、完整有效的数据库系统,其步骤如下:
首先,设计数据库相关概念模型。在岩土工程勘察一体化中,数据库信息管理是其基础功能,鞥能够良好解决繁杂、多元数据库应用过程中的系列问题,因此就可以立足于数据库的良好应用上科学构建合理应用型数据库表结构,这样才能够有效获取能完整表达地层信息数据的概念数据模型。
其次,构建相应数据库。岩土工程勘察数据库系统主要包括用户输入初始化数据、系统转化的中间数据以及转化后最终形成的数据。用户输入的初始化数据主要是通过观察勘察探测点所得的数据组合;中间数据则是经过系统处理转化的、与底层层面密切相关的剖面模型、等值线模型以及三维表面模型数据;而最终数据种类较多,基本都是结合用户需求转化的文档、图形等资料。图2显示数据库系统功能模块图。
图2 系统功能模块图
4结语
时代和社会的进步意味着各行各业传统落后技术和方法的革命创新,岩土工程勘察和工程设计工作也是如此,当前计算机科学技术和信息化数字技术变化日新月异,各种新的应用软件和应用系统层出不穷,岩土工程勘察设计工作人员也应当充分利用先进的数字化技术融合到现有岩土工程勘察工作中,相关工作人员更应当大力发展,改革实践和创新岩土工程勘察数字化系统,不断优化其勘察系统质量和结构,使得其工作能够与时俱进,能够充分应对市场竞争需求和时代脚步。
参考文献
[1]李斌.基于岩土工程勘察数字化技术及实现的浅析[J].科技与生活,2009(1).
[2]罗永康.岩土工程勘察数字化技术与实现[J].大科技,2014(12).
[3]郑金花.探讨关于岩土工程勘察数字化技术应用[J].城市建设理论研究(电子版),2013(10).
[4]李小林.浅谈城市工民建项目中岩土工程勘察技术的应用[J].江西建材,2013(6):178-179.
[5]孙明广.岩土工程勘察数字化技术应用及展望[J].科技风,2010(11):86-87.
[6]刘惠芳.浅谈我国岩土工程勘察技术现状及其改进措施[J].建筑·建材·装饰,2015(22):344-345.
[7]丁德松.浅议数字化技术在岩土工程勘察领域的应用[J].企业技术开发,2013,32(3):149~150.
论文作者:梁全录
论文发表刊物:《建筑科技》2017年第10期
论文发表时间:2017/10/26
标签:岩土论文; 工程勘察论文; 岩土工程论文; 地质论文; 数据论文; 模型论文; 空间论文; 《建筑科技》2017年第10期论文;