摘要:随着我国国民经济的不断发展,我国点电力事业也在不断进步,但是随之而来的是越来越突出的电力生产安全问题。输电线路的正常运行受到许多因素的影响,比如外界环境和天气状况,这些因素都具有很大的不确定性,这样就会造成更大的损失。当夏季雷雨多发时,由于雷击事故而造成输电线路大面积瘫痪,从而影响到电网的正常运行,进一步会影响到当地居民的正常生活,影响社会的生产活动。
关键词:输电线路;防雷设计;线路运维
1输电线路在雷击后发生事故的原因
1.1 环境方面
输电线路的沿途自然环境一般比较复杂,尤其是我国是一个多山地的国家,这就使得线路的铺设不得不在山地进行,这样就使线路更加繁杂。由于自然环境的复杂,输电线路铺设的范围广、距离较大,在这样的情况下常常会遭到雷击,进而会影响到整个地区的供电问题。一般山区的环境复杂,尤其是在夏季雷电较多的季节,更是输电设备遭到雷击的多发期,所以自然环境对输电线路的安全存在很大的影响。
1.2 施工方面
在进行输电线路的施工时,由于地质环境和施工技术的不同,都会对施工的质量产生影响。如果技术不够成熟,最终会导致输电线路遭到雷击而发生跳闸现象。有许多的输电线路位于地理环境复杂的地区,而这些复杂的环境可能会对输电设备造成损害,比如在砂石较多的地方会导致该地区的的电阻率增大,这样就会提高输电塔杆的接地电阻。如果施工人员的专业素质不够或者责任心不强,在进行工程施工时采用的降阻剂不适应实际的需要,则会导致工程质量的下降,提高了接地网的腐蚀速度,从而影响工程线路的安全。在雨季进行施工时,由于土壤中的水分比较多,而且这些水分长时间积存在土壤中,这样在进行塔杆接地电阻的测量时会造成影响,进一步会影响到电阻值的测量换算。由于真实数据的不准确无法反映出当地实际的接地电阻值,也就不能够在第一时间发现不良的接地体,这样就加大了输电设备遭受雷击的几率。
1.3 设计方面
在进行输电线路的设计时,设计人员应该充分考虑到线路所在地区发生雷暴天气的几率,要降低线路的保护角度,避免雷击事故的发生。一般情况下位于山坡上的塔杆比较容易遭到雷电的袭击,尤其是在某些雷电活比较频繁的地区,由于塔杆的避雷线保护角过大,降低了线路的耐雷击水平,从而无法发挥出它应有的保护作用。除此之外,在进行线路的铺设时应该充分调查该地区的天气状况和地质环境,选择雷电发生率比较小的地区,要充分分析线路的雷害特点,全面了解避雷器的性能和保护效果,从而实现线路的避雷目的。
2 输电线路防雷设计探讨
2.1 增加绝缘子
按照相关规定,线路绝缘是有一定要求的:一、若线路所处地区的海拔不超过一千米,那么,110kV线路中的绝缘子数量应在7片至8片左右(最好是8片)。二、若档距比较大且杆塔高度超过了四十米,那么,绝缘子数量应按照每增加十米加装1片的标准来确定。
2.2 优化接地装置
以110kV线路为例,其运维中应以改良、优化接地装置为工作重点。在将接地装置进行改良之后,线路出现跳闸的次数会有所减少,故障概率也会因此降低。依据相关实例来讲,优化接地装置之后,输电线路中跳闸率的降幅最大可达30%;如果接地装置以往设置的比较不合理,在经过改良之后,跳闸率降幅甚至可以达到50%。
具体实施中,接地装置改良的要点是降低电阻,一般方法包括填充低阻物、安装导电模块等,应结合实际情况进行选择。在电阻率相对较高的情况下,降阻可采用布设接地极的方法,以解决接地不良问题。但要注意的是,不同线路的布设要求也不一样,实施中应注意区分。
期刊文章分类查询,尽在期刊图书馆若为水泥杆塔线路,接地极布设应从其3米到5米之间的位置开始;若为铁塔线路,接地极布设应从其5米至8米之间的位置开始。使用的接地极最好选择长度为1.5米长的,间隔距离最好在4米至6米。除了布设接地极之外,接地装置改良还可以通过增加耦合系数实现。此种方法的实现途径通常是增加架空地线或耦合地线。
2.3 加装避雷设施
若杆塔较高,不仅会缩小其本身以及线路与雷云之间的间距,还有可能会造成雷云与线路平行或者接近杆塔的情况。在这样的情况下,杆塔本身会处于一个较为复杂的电磁环境中,雷电绕击过电压几率会因此增大。对于这个问题,现实中可通过加装侧向避雷针的方式来解决。对于110kV线路来讲,侧向避雷针通常被安装在杆塔横阻两边的位置,长度一般约为3米,安装时应注意在其中间1.2米处进行固定。若横向设备需加装避雷针,那么其长度最好在1.8米左右。而电气连接则需将其螺孔与杆塔横担进行连接来实现,其可以将雷电流引入大地。结合安装效果来讲,侧向避雷针能够起到提升防绕击水平等作用,对于保障线路安全有着非常积极的作用。但是,其也有一个明显的局限性:引雷率较高。对于这个局限性,目前相对有效的克服措施是增加绝缘子数量。
另外,氧化锌避雷器也是一种在线路防雷方面具有一定优势的设备。其适用于雷电活跃、电阻率较一般情况偏高以及一般降阻方法无法实现的情况,可有效降低跳闸率以及绕击率,对保障线路安全能够起到非常显著的积极作用。
2.4 调整保护角
目前,线路防雷除了上述措施之外,调整保护角也是一项比较有效的策略。此种方法具有一定的防雷效果,但是,其缺点也比较多,其中包括:投运线路往往很难进行保护角调整;部分线路无法实施;此种做法需要大量资金作为支持,成本较高。所以,在具体线路中,应结合资金实际和技术能力,综合分析以确定合理的保护角,保证线路效益。
3 输电线路运维技术分析
3.1 线路检修
运维是保证线路安全的基本手段。变线为点是一种经实践证明效率较高的检修模式,但需要专业的技术人员去实施。线路检修应注意下述三点:一、为了保证线路检修秩序,确保检修任务能够按时完成,在检修过程中,应注意保障交通便利。二、应尽量选择技术先进、售后服务质量高、性能佳的设备。三、使用的线路老化率最好不要超过3‰且绝缘爬距必须符合规定。检测周期应根据线路老化率决定,若其近四年均不超过2‰,检测周期应为4年/次;若其近四年均在2.5‰,检测周期应为2年/ 次。检修工作中需要注意的是,对于比较容易受外力影响的杆塔等,应采取一定的保护措施;对于暴露在外的线路,要注意保养其绝缘材料。
3.2 防雷监测
统计资料表明,雷击跳闸是输电线路最容易出现的故障之一,发生率较高,特别是在某些山区,由于气候、地形、环境相对比较特殊,雷击事故的发生率非常高,已然成了线路的最大安全威胁。所以,线路运维中,防雷监测也是一项非常重要的任务。在目前的情况下,人们已经逐渐认识到了雷电对线路的危害性,也在管理工作中对防雷监测技术进行了改进,取得了一定的成效。值得一提的是,由于雷击事故具有突发性,因此,应注意合理布设防雷装置,并做好维护,确保其能够正常工作。
4 结语
输电线路的防雷工作关系着人们的生产和生活,只有降低输电线路遭受雷击的概率,才能够减少经济的损失。本文通过对防雷设施的研究和讨论,找到了相应的防雷措施,提高了输电线路的安全性。在进行施工时还要充分考虑到当地的施工环境,实事求是的选择比较合理的防雷设计方案,从而提高输电线路的耐雷水平,将雷害带来的损失降到最低点,进而促进我国电力事业的进步。
参考文献:
[1]郭省平.输电线路运行故障原因及查找[J].科技与创新,2015(20):144.
[2]谢家力.肇庆地区输电线路防雷措施探讨[J].技术与市场,2015,22(10):31.
论文作者:李宁
论文发表刊物:《电力设备》2017年第3期
论文发表时间:2017/4/26
标签:线路论文; 杆塔论文; 防雷论文; 雷电论文; 较高论文; 的是论文; 环境论文; 《电力设备》2017年第3期论文;