摘要:基于智能电网快速发展的现状,在变电运维工作中提出一种无需进行停电的带电检测技术,明确其在变电运维中具有的优势,并对红外测温技术、超声波信号检测技术、暂态地电压检测技术与高频局部放电检测技术等几种常见带电检测技术的原理、优势、检测方法和使用范围进行分析,最后结合实例验证了技术的可行性与有效性。
关键词:变电运维;带电检测技术;技术应用
引言
电力是当今社会的重要能源,随着社会经济快速发展,人们对电能需求要求越来越高,电力系统的稳定是安全生产的前提。因此,变电维护等只有不断引进新技术,及时发现与解决系统潜在问题,才能保障系统的稳定运行。带电检测不需要停电即可检测出故障,目前多种带电检测技术在变电运维中已经得到了应用,可以满足电力系统维护运行的基本要求。
1变电运维中带电检测技术优势
与传统在线监测技术有很大的不同,带电检测技术只在短时间内进行带电检测,因此能在设备运行时完成检测,无需停止设备运行。在变电运维工作中,带电检测技术主要具有以下优势:可实现不断电检测,不影响设备运行,避免由于设备停电造成的损失,保证供电可靠性与安全性;避免设备检测维修和运行间产生矛盾,即使在设备运行时也能及时排查、消除故障隐患,此外,因部分设备老化较为严重,所以进行高压测试时有可能发生故障,而带电检测则可以从根本上避免这一情况的发生;可将设备实际运行情况作为依据,对检测的时间进行灵活安排,既不会影响设备运行,又能及时发现和处理隐患。
2带电检测技术在变电运维中的应用
局部放电是一种电气放电现象,产生的主要原因在于绝缘介质外施电压上升到一定程度时产生电离的电气放电,是变电设备绝缘内部的一些气泡、空隙、杂质和污秽等缺陷造成的。变电设备绝缘中常常容易出现局部放电,这种局部放电分散发生在相当小的局部空间内,一般不会导致绝缘穿透性击穿问题的出现,但是时间久了易造成电介质的局部损坏,这样就会因局部小问题带来整个变电设备的运行问题。如果长期存在局部放电,极易出现绝缘击穿的问题,这是对变电设备的致命打击。所以为了变电设备的正常运行,必须定期不定期地对电力设备进行局部放电试验,全面检测设备的运行状况。
2.1红外检测技术
红外检测技术建立在带电设备的致热效应基础上,利用特定的仪器获取设备表面发出的红外辐射信息,从而根据辐射信息判断辐射值是否有偏差,进而对设备的运行状况进行判断,并找出缺陷的根本所在。该技术由于采取特定仪器获取辐射信息,因此不需停电,而且能够远距离的高效分析红外辐射信息,这些优点使得红外检测技术在电力设备带电检测中应用价值高。红外成像仪集软、硬件于一体,稳定性好,探测距离远、功能可靠。该设备能够对被测目标发出的红外辐射信号进行放大处理,并将之转换成标准视频信号,然后通过自带的监测器实时显示被检测设备的热像图,通过对图像的分析来判断设备是否出现缺陷或故障。该图像不仅能够用图片格式存放,同时更可以利用电脑软件进一步分析,最终编制分析报告。但红外检测技术在实际检测过程中也具有其一定的局限和操作要求:①阳光或者照明设备等光源会对测量带来很大影响,因此要求检测在无雨、雾的夜晚进行;②热像图的捕捉和分析要严格根据设备特点,并结合实际情况进行分析。
期刊文章分类查询,尽在期刊图书馆
2.2超声波信号检测技术
2.2.1原理与优势
超声波信号检测系统在设备出现放电等异常现象后,信号将以行波形式传至设备的表面,通过安装在设备表面上的传感器对这些信号进行接收、检测,最后根据信号大小与频率及时作出处理,消除故障。
2.2.2检测方法与适用范围
与红外测温技术相同,该检测技术不会受到电磁场的影响和干扰,可在大电容器及气体绝缘开关等设备的带电检测中应用。在实际工作中,该技术主要用于设备放电检测,包括配变、开关柜与断路器,此外也可以检测那些直观上难以看出的故障,如SF6气体泄漏等。需要注意的是,配电设备与电缆的终端由于放电产生的振动的幅度一般较小,若此时采用该技术进行检测,检测结果容易出现一定偏差,无法保证其准确性。
2.3无线电干扰电压法
电晕放电的情况下会产生电磁波,而这种电磁波能够通过无线电干扰电压表来进行检测,从而对电气设备的局部放电进行检测,国外目前仍有通过无线电干扰电压表来进行检测局部放电,而在国内常用射频传感器检测是否存在局部放电,所以这种检测方法在国内又叫射频检测法一般常用电容传感器、Rogowski线圈电流传感器和射频天线传感器等。Rogowski线圈电流传感器发源于20世纪80年代的英国,1996年吴广宁等人对该传感器进行了不少改进,设计出宽频电流传感器,这种传感器能够对大型电机局部放电进行在线监测,具有很强的实用性,并获得了国家专利,这种在线检测传感器被应用在陕西秦岭发电厂、兰州西固热电厂;此传感器后来被用于大型汽轮发电机-变压器组,并在元宝山发电厂的运用中取得良好的效果。RIV方法不仅能定性检测局部放电现象,亦可通过电磁信号强弱对电机线棒和无屏蔽层的长电缆进行局部放电定位;Rogowski线圈传感器在实际运用中能够定量检测放电强度,且具有多达30MHz的测试频带,因此实用价值大。
2.4暂态电压脉冲检测技术
在设备的局部放电过程中伴随着电磁波的产生,电磁波可以通过检测设备传导到地面,进而产生暂态电压脉冲。利用这种现象,采用专用检测仪器对变电设备进行带电检测,可以有效发现开关柜、配电网和环网柜等部分的故障问题。使用电压传感器捕获电压时间差,可以用来确定局部放电的具体发生位置,并对其放电强度和频率进行检测。通常放电位置间距越小,电压传感器采集到的暂态电压数值就越高,此外暂态地电压信号还与局部放电活跃程度有关,使用dB/mV表示两者关系。
2.5特高频(UHF)局部放电检测技术
测试仪器的1GHz测量频带成为现实之后,这种强大功率的测试仪器能够成功测试出GIS中的初始局部放电脉冲。在此强大的频带下,可通过衰减噪声信号的方式降低噪声对放电检测的影响,从而更大限度的再现局部放电脉冲,以此深化对局部放电的机理研究。根据频带的宽窄,可分为特高频窄带检测、宽频带检测。前者中心频率高达500MHz,后者带宽可达GHz。由于特高频超宽频带检测技术能够对噪声起到明显的抑制作用,同时又具有信息量大的优点,因而使用较多。
结语
在变电运维工作中合理应用带电检测技术,除了能良好适应电力系统可靠运行基本需要,还能为运维工作人员提供先进的检测方法与手段。变电运维工作的深入开展,需要利用好带电检测技术所具有的各项优势,实现设备实时、动态检测,在第一时间掌握设备实际运行情况,做到尽早发现和处理故障隐患,进而从根本上保证电力系统安全、可靠运行。
参考文献:
[1]钟理鹏,汲胜昌,崔彦捷,等.变压器典型缺陷局放特性及其带电检测技术研究[J].高压电器,2015(03):15-21.
[2]刘嘉林,董明,安珊,等.电力变压器局部放电带电检测及定位技术综述[J].绝缘材料,2015(08):1-7.
论文作者:刘常军,牛丽丽
论文发表刊物:《电力设备》2017年第36期
论文发表时间:2018/5/10
标签:局部论文; 设备论文; 检测技术论文; 传感器论文; 电压论文; 信号论文; 故障论文; 《电力设备》2017年第36期论文;