高中生物教学中有关数学建模问题的探讨论文_吕小丹

吕小丹

摘要:生命科学是理科中的一大支柱,具备理科思维的严谨性、逻辑性与科学性。其中蕴含数学建模思想,在生物学科教学中,归纳出一般的规律显得十分的重要。高中尝试将生物问题与数学建模联系在一起,既可以树立理科意识,又可以很好地使用数学工具解决一些复杂的问题。

关键词:高中;生物教学;数学建模

生命科学是自然科学中的一个重要的分支,在现行的高中生物学科中涉及到的知识,要求学生应具备理科的思维方式。因此,在高中生物教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。

一、高中生物学科中的数学建模

在高中学习阶段,数学是学习其他学科的基础,它作为一门工具学科在物理和化学上具有广泛的应用。由于高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模,就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

二、数学建模思想在生物学中的应用

1.数形结合思想的应用

生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识。

例1.下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是( )

A.图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段

B.图1中CD段变化发生在减数ii后期或有丝分裂的后期

C.就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂

D.图2中的三个细胞不可能在同一组织中出现

这是一道典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减数第二次分裂的后期及丙为减数第二次分裂中期;而图1中的AB段表示的是间期中的S期正在进行DNA复制的过程,BC段表示的存在姐妹染色单体(含2个DNA分子)的染色体,DE段表示的是着丝点断裂后的每条染色体上只含有一个DNA。

2.排列与组合的应用

高中生物学科在高二、三年级开设的,学生应该清楚排列与组合的相关数学知识。在高中生物学上,涉及到比较多的排列与组合的相关知识。比如,遗传信息的问题,还有精(卵)原细胞经过减数分裂形成配子时,其基因组成的情况分析等等,都需要运用到数学的排列与组合的知识。教师作为学生的启发者与指导者,在教学中可以先结合具体的实例,从用排列与组合角度,以及结合生物学的知识,构建上位概念,进而使学生的知识发生迁移,举一反三。

例2.人类皮肤中黑色素的多少由三对独立遗传的基因(A、a和B、b和D、d)所控制,基因A、B、D可以使黑色素量增加,三对基因对黑色素的作用程度是一样的,而且每对基因以微效累积的方式影响黑色性状。两个基因型为AaBbDd的婚配,子代表现型种类以及子代与AaBBDd的个体表现型一致的概率分别是?

如果把这道题转换成数学当中的排列组合思想来解答,就非常简单了,首先后代个体的表现型根据题意可知如果有六个显性基因的话,皮肤颜色是最深的,如果是五个显性基因加一个隐性基因的话是第二深的,依次类推可知有7种表现型。根据自由组合定律知道后代的结合方式是64种,与AaBBDd的个体表现型一致,只需基因型中有4个显性基因即可,所以是数学当中的C6取4,即15,所以是15\64 。

3.数学归纳法的应用

在生物教学中,教师可以先让学生对一些实例的练习,然后经过分析、归纳出一般的规律。如此这样,学生经过分析、推理等思维过程,使新知识与原有的知识建立了联系,进而概括出新的规律性知识并重建新的认知结构,然后通过运用新规律,进一步检验、巩固新知识,并实现知识的迁移。

例3.(1)让杂合黄豌豆连续自交n代后,杂合体所占的比例是

(2)在基因工程中,把选出的目的基因(共1000个脱氧核苷酸对,其中腺嘌呤脱氧核苷酸是460个)放入DNA扩增仪中扩增4代,那么,在扩增仪中应放入胞嘧啶脱氧核苷酸的个数是教师帮助学生采用数学归纳法,不难构建出数学模型。如第(1)题的数学模型是:N=1/2n;

第(2)题的数学模型是:SN=A×(2N-1)(A为配对的碱基数目,N为复制的次数)。

4.概率的计算

概率是高中数学中的比较重要的知识,其中涉及到的有相加、相乘原理。在高中生物教学中,结合数学中的概率来计算遗传的机率,就显得十分的简单。因此,建立数学模型显得尤其重要。

例4.(1)囊性纤维变性是一种常染色体遗传病。在欧洲的人群中,每2500人就有一个人患此病。如一对健康的夫妇生有一个患此病的孩子,此后,该妇女又与一健康的男子再婚。再婚的双亲生一患病的孩子机率是( )

(2)假定基因A是视网膜正常所必需的,基因B是视神经正常所必需的。这两类基因分别位于不同对的染色体上,现有基因型为AaBb的双亲,从理论上分析,他们所生的后代视觉正常的可能性是( )

上述第(1)题运用哈迪-温柏格定律:设常染色体上的一对等位基因A和a的频率分别为P和Q,且P+Q=1,(PA+Qa)2=P2(AA)+2PQ(Aa)+Q2(aa)。不难得出本题的结果。第(2)题可以用概率相乘原理容易得出答案。

3.生物教学中构建数学模型的意义

高中生物学科中涉及到的数学建模远不及这些,限于篇辐,本文在此只作简要的归纳。我们知道,实际问题是复杂多变的,数学建模需要学生具有一定的探索性和创造性。在生物学科教学过程中进行数学建模思想的渗透,不仅可以使学生体会到生物学并非是一门理解型的自然科学,而且可以使学生感觉到利用数学建模的思想结合生物学理论知识,能很好地解决一些生物学实际问题的妙处,进而对生物学产生更大的兴趣。在生物学科教学中,构建数学模型正是联系数学与生命科学的桥梁。如何将生物学理论知识转化为数学模型,这是对学生创造性地解决问题的能力的检验,也是理科教育的重要任务。

作者单位:辽宁省盘锦市辽河油田第二高级中学

邮政编码:124000

论文作者:吕小丹

论文发表刊物:《中学课程辅导·教学研究》2014年3期供稿

论文发表时间:2014-3-11

标签:;  ;  ;  ;  ;  ;  ;  ;  

高中生物教学中有关数学建模问题的探讨论文_吕小丹
下载Doc文档

猜你喜欢