电力电缆常见故障及检测方法分析论文_刘辉

电力电缆常见故障及检测方法分析论文_刘辉

鄂州供电公司路灯管理中心 湖北鄂州 436000

摘要:电力电缆作为电力系统的重要组成部分,一旦发生故障将直接影响电力系统的安全运行电力电缆供电以其安全、可靠、,得到广泛的应用。但是电力电缆一般都埋在地下,一旦发生故障,要经过诊断、测距(预定位)、定点(精确定位)个步骤。采用合适的故障测试方法,尽可能快速、准确地找到故障点,减少因停电造成的损失。

关键词:电缆;故障;方法;技术

一、电缆的故障类型分析

电力电缆的故障类型造成电力电缆故障的原因有很多,比如:机械损伤、绝缘受潮、绝缘老化变质、过电压、材料缺陷、电缆绝缘物流失、设计和制作工艺不良以及护层腐蚀等。按照故障出现的部位,通常可将故障类型大致分为断线故障、主绝缘故障和护层故障断线一般是由于故障电流过大而烧断电缆芯线或外界机械破坏等原因造成的,其测试比较简单。从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。

绝缘故障根据故障电阻和击穿间隙的情况,通常将绝缘故障分为低阻、高阻及闪络性故障。低阻故障与高阻故障的区分界限一般取电缆本身波阻抗的l0倍,但在实际测试工作中并不要求很严格地区分。闪络性故障的故障点电阻极高,可给故障电缆施加到较高的电压,故障点才闪络击穿。预防性试验中所发生的故障多属于这种情况。

电力电缆故障判明电缆故障的性质后,一般要先进行预定位测试,估算出故障点到电缆头的距离。这一过程也称作故障测距。预定位测试可以避免查找故障点的盲目性,提高工作效率。

二、电缆故障测试方案

冲闪法测试短路故障典型波形:通过高压脉冲电容器等储能设备向故障电缆冲击放电,电缆故障点被击穿并维持短暂时间可以较好地测试高阻和闪络性故障。击穿初始时刻,故障点处会产生个行波信号,沿电缆线路在端点及击穿点处来回多次折反射。通过分压器或电流耦合器,在示波器或专用仪器上观察该行波信号在测量端与故障点间往返的时间,即可计算出故障点的距离。

脉冲电压法和脉冲电流法:脉冲电压法检测的是电压行波信号,其优点是波形易于理解;而脉冲电流法则是检测电流行波的变化量信号,其优点则是操作安全、接线简便。

期刊文章分类查询,尽在期刊图书馆

闪法测试闪络型故障典型波形:对于闪络性故障,可直接向电缆上施加直流高压由于该情况下故障电阻极高,试验电压升到一定值时,故障点处就会产生闪络击穿。这时所得到的脉冲电流法测试波形更为简单、直观,容易理解。

二次脉冲法:对于高阻和闪络性故障,先用高压脉冲将故障点击穿,在故障点起弧后熄弧前,由测试仪器向电缆耦合注入一低压脉冲。此时的情况类似于低阻故障,耦合进的脉冲信号在故障点会发生反射,记录下此时的反射波形。电弧熄灭时,测试仪器再向电缆注入一低压脉冲,此脉冲在故障点处再发生反射,再记录下此时的波形。将两次得到的波形叠加在一起进行比较,波形明显的地方即为故障点。当故障点电阻等于无穷大时,用低压脉冲法测量容易找到断路故障,一般来说,纯粹性断路故障不常见到,通常断路故障为相对地或相间高阻故障或者相对地或相间低阻故障并存。当故障点电阻等于零小于100Ω时,用低压脉冲法测量短路故障容易找到。高阻故障可用冲闪法测量,故障点电阻大于100Ω且数值确定。一般当测试电流大于15mA,测试波形具有重复性以及可以相重叠,同时一个波形有一个发射、三个反射且脉冲幅度逐渐减弱时,所测的距离为故障点到电缆测试端的距离;否则为故障点到电缆测试对端的距离。

电缆故障定点高频感应法:利用高频信号发生器向电缆输入高频电流,这样会产生高频电磁波,然后在地面上用探头沿电缆路径接收电缆周围高频电磁场,电磁场的变化经接收处理后直接在液晶屏幕上显示出来,根据显示出数值的大小直接判断故障点位置。高频感应法与传统音频感应法相比有如下很多优点。高频信号源本身就比音频信号源容易实现,制造容易,可以减少定点探测装置的体积和重量,为设备的小型化和便携创造有利条件。

红外热象技术:基于电缆一旦过载,线芯的温度将会急剧上升这一现象,人们可对电缆的线芯温度进行监测来判断故障位置。步骤如下:首先采用红外热象仪扫描电缆表面,拍出电缆的表面温度场分布图象,进一步处理可得出温度场的具体数值分布,然后根据已建立的传热数学模型,根据电缆结构参数,物性参数,环境温度及表面温度对电缆线芯温度进行反演计算,从而实现电缆线芯温度的非接触的故障探测。正是红外技术不需接触设备,不要求设备停运,且具有操作简便,检测速度快,工作效率高等优点,在未来的电缆故障检测中,红外热象技术必将发挥更大的作用。

结语:

随着电缆故障测试技术水平不断提高,对不同的故障性质采取不同的方法,在电缆故障测寻时,借助现代化的仪器和设备,便可准确迅速地确定故障点的精确位置,为迅速处理故障,尽快恢复送电赢得了宝贵的时间。本文电力电缆故障检测进行了,这些应用可以直接找到故障点进行处理,提高了故障测寻的效率,从而节省人力物力,缩短处理电缆事故的时间,创造较大的经济效益和社会效益。

参考文献:

[1] 陈巧勇,文习山,吴桂芳,陈江波.交联聚乙烯电缆绝缘在线检测直流叠加法的研究[J].绝缘材料.2012(06)

[2] 一种通信电缆护套材料及其制备方法[J].乙醛醋酸化工.2018(02)

[3] 邹东,肖明辉.高架33kV电缆护套开裂原因分析及措施[J].电气化铁道.2015(02)

[4] 范士华,毛文华.生产电缆护套料存在的问题探讨[J].纤维复合材料.2014(03)

论文作者:刘辉

论文发表刊物:《基层建设》2019年第7期

论文发表时间:2019/6/25

标签:;  ;  ;  ;  ;  ;  ;  ;  

电力电缆常见故障及检测方法分析论文_刘辉
下载Doc文档

猜你喜欢