从过程教学看初中“毕达哥拉斯定理”的教学_勾股定理的证明方法论文

基于过程教学视域下的初中“勾股定理”教学探究,本文主要内容关键词为:勾股定理论文,视域论文,初中论文,过程论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

      过程教学法最开始的发展是针对写作过程,过程教学法认为写作的过程是一种群体间的交际活动,而不是作者的单独行动,因此过程教学法通过充分培养学生的思维能力来提高学生的写作能力,从而将教学重点放在学生的写作过程上.在新课标对教学改革工作的不断需求下,我们将过程教学引入到数学教学过程中是非常可行的.过程教学法更加尊重被教育者的知识结构和认知水平,切合教学目的和任务,创造合适的问题场景,通过教学过程分析和解决问题,从而达到最终的教学目的,这是过程教学法的核心思想.

      过程教学的内涵

      过程教学法的核心在于教学过程,无论是教师的授课过程,还是学生的学习过程,过程教学都要求学生能在过程中思考,并在思考的过程中加深对所学知识的理解.过程教学法具体表现在以下几方面.

      (1)充分认识教学过程中“知识”的生成过程.什么是知识生成过程,拿我们要说的勾股定理来说,勾股定理的应用能够追溯到公元前约3000年的古巴比伦,并且他们已经知道了很多勾股数组(3,4,5即为一个勾股数组).在中国,公元前十一世纪的时候,周朝就有了“勾三股四弦五”的记载,勾股定理的发展历史只是勾股定理知识产生过程中的其中一环.对于过程教学,我们更加要理解知识的发生以及应用发展的整个过程——从定理的猜想到假设,再到定理的证明等阶段,深刻认识到数学知识生成的逻辑顺序.

      (2)教学过程更加是思维发展的过程,即在教学过程中不断发展和完善学生的思维能力,因此,过程教学也要再现人类研究问题的特征,即知识从失败到成功的过程.教学过程更加要结合学生思维的特点,引导学生主动地思考.学生走入误区不是坏事,这是人类思考问题的共性,符合人类思维过程的特点.过程教学不是一种怎样的教学手段,更为体贴的描述应该围绕教学目标,让学生思考整个过程的指导,忽视结果,重视过程,重视对知识的探索过程.

      定理教学的特点

      就数学教学过程中的定理教学而言,难的不是在于定理的证明过程,而是在没有定理出现的时候,面对问题的发生和解决,人类是怎样思考并找出这个定理的,因此对于定理教学,就更加需要过程教学的辅助,结合过程教学的主要思想,让学生清晰地认识定理的发现、探索,以及最后获取的过程,培养学生自主思考的能力.通过过程教学开展定理教学的主要方式有:

      (1)数学定理的导入环节当作过程教学的开始,其主要目的在于解释知识背景,这个过程中需要教师拿出具体的生活案例激发学生探究和学习新知识的渴望.例如,现在有一个直角三角形,我们知道了两条直角边的长度,根据三角形的特点,第三条边能否通过计算得出来?下面我们开始教学活动.

      (2)定理的重构环节是教学难点.由于大家对这个定理已经非常熟悉,当然这都是很多科学家总结出来的,重构勾股定理发展的过程实际上具备一定的难度,这就需要教师根据学生现有的知识结构,模拟并且重构勾股定理的发展过程,并且在过程中学生主动思考和探索.

      (3)定理的运用环节.运用也是过程教学中不可缺少的重要环节,能检验学生对定理的掌握程度.过程教学虽然更加注重过程,但如果学生不能学到知识,不能运用新知识去解决问题,那么整个教学过程就是失败的.定理运用的环节能够强化学生对勾股定理的理解.

      过程教学视域下的教学案例

      通过上文我们知道了过程教学在定理教学中的运用方式和注意事项,那么,如何根据实际开展勾股定理的教学工作呢?具体的教学过程安排如下:

      1.定理的导入环节

      其中一种方式是从数学史的角度,即我们可以通过展示中国邮政发布的一枚标有中国古代证明勾股定理的赵爽图来开展定理的导入环节;也可以这样进入引入环节:拿一根长1.2米的白绳子,通过测量30,40,50厘米长的绳子组成一个三角形,让部分同学在黑板上测量角度.

      2.定理的重建过程

      我们都知道,勾股定理的具体内容是在直角三角形中两条直角边的平方和等于斜边的平方,具体的表述为:

      

(a,b分别为直角边,c为斜边)

      定理针对所有的直角三角形,那么这个定理的建立过程一定是从特殊到普遍,因此在勾股定理的重构过程中,我们可以通过演示特殊的直角三角形开始展开勾股定理的重建.

      例如,在一个格点图形中(如图1),每个小方格都是均等的,而且假设小方格的边长都是1,即面积也是1,于是可任意找一个定点都在格点的直角三角形,然后分别以这个三角形的每一条边作正方形,然后计算斜边作为边长的正方形的面积.

      

      通过割补等不同的方法,能让学生自己探索正方形Ⅲ的面积.既然在单位是1的格点图形中,直角边和斜边满足一定的数量关系,那么是不是其他比例下也同样满足呢?如果单位是1.1呢?具体的实现过程是不是也满足呢?可根据等式两边同时乘1.1,等式依然成立,来引出定理的一般性.

      或者,我们可以通过在课堂上演示加菲尔德证法的实现过程来完成定理的重构.比较有趣的是,加菲尔德在证明这个结论以后的几年,成为美国总统,因此又叫总统定理,这样的趣味性也能够增强过程教学中学生的注意力.加菲尔德证法也是通过面积求和的思想实现的,如图2所示.

      

      教师一定要积极引导,但不能直接提醒面积求和的思想,应让学生在对定理的探索过程中,主动发现和思考,教师还应创造一定的情景,引出面积总和的思想.总之,学生对定理的探索过程非常重要,能加深其对勾股定理的理解,而且对于以后勾股定理的实际运用有非常大的帮助.

      3.定理的运用过程

      通过我们对于定理的导入和重构过程,学生对于勾股定理已经有了一定的了解,因此,在课堂上,对于定理的运用过程,一定要难易结合,循序渐进.例如,可首先用一道比较简单的习题考查学生对定理的基本掌握情况:在Rt△ABC中,∠C=90°,其中AC=5,AB=13,求BC的长.然后,我们可以适当增加题目的难度,难题的解决能够提高学生在学习过程中的成就感,有助于过程教学质量的提高.如下题:如图3所示,EF是正方形ABCD的中线,将∠A沿DK折叠,让点A与KF上的点G重合,求∠DKG的大小.

      

      这样的题目稍难一点,是勾股定理运用中需要一定思考量的题目,这类题目往往与别的知识相关联,是多知识综合运用的题目.多场景、多知识的运用能够提高学生对知识的综合应用能力.

      关于提高过程教学视域下“勾股定理”的教学质量问题

      1.勾股定理的导入过程

      勾股定理的导入过程一定要具备吸引力,除了上述描述的创造问题场景和勾股定理发展史,还有很多的方法,但导入的过程一定要把握勾股定理的内涵,创造学生现有的知识结构对勾股定理进行认识,从而激发学生的学习兴趣,为接下来的过程教学提高良好的铺垫.

      2.关于勾股定理的重构过程

      勾股定理的重构过程必须把握如下几点:

      (1)让学生能够在一定程度上了解知识的产生、发展以及运用过程,在这个过程中,让学生认识定理是从特殊到一般的发展规律.

      (2)把握学生的思维特点,让学生经历观察、实验、猜测等清晰的逻辑思维过程.

      (3)允许学生发出疑问,并且鼓励学生发言,例如,当两条直角边的平方和大于第三边时,会发生什么,及时地发现学生的思维亮点,提高学习过程中的互动性.

      (4)考虑学生的认知水平,切合实际,在丰富的数学教学经验下,预估学生对于勾股定理的理解能力,结合数学教学特点,培养数学逻辑能力.勾股定理的重构过程是勾股定理教学的重点,也是难点.

      3.关于勾股定理的运用过程

      勾股定理的运用过程其实也需要过程教学思想的指导,可通过得知直角以后求边长的数值,也可以运用现有的工具获取一个直角,多角度地运用勾股定理进一步巩固学生对勾股定理的理解.在勾股定理的运用阶段,我们也可以适当引入一部分关于勾股定理的奥数题目,这类题一般都具有一定的难度,同时也具有一定的趣味性,而且相对来说,对勾股定理的运用更加透彻,需要大量的创新思维,这不仅能让学生主动思考,还能借此强化学生的团队合作精神.

      虽然过程教学视角是以“过程”为学习目标,但过程教学是为了让学生更好地理解和掌握学习结果.就我们的教学过程而言,过程教学的主要目标是能够让学生在学习的过程中对勾股定理有全方位的理解和运用.我们重视过程,更加需要重视学生在学习过程中的思维能力和学习效果.

标签:;  ;  ;  ;  

从过程教学看初中“毕达哥拉斯定理”的教学_勾股定理的证明方法论文
下载Doc文档

猜你喜欢