衍生产品市场的SPAN系统与风险管理_投资组合论文

SPAN系统与衍生品市场的风险管理,本文主要内容关键词为:风险管理论文,衍生品论文,系统论文,市场论文,SPAN论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

风险管理水平是衡量一个衍生品市场参与者、一个交易所乃至整个衍生品市场成熟程度的重要指标。由于市场风险中的各种风险因素相互关联,难以独立评估,因此无论市场的参与者还是交易所都需要一种综合指标来反映它们面对的整体市场风险。

目前在市场上运用最广的综合性风险衡量指标体系是基于VaR理念的指标体系。VaR理念的核心是VaR风险值,即一个资产组合在特定持有期间内以及特定的置信区间下,由于市场价格变动所导致此投资组合的最大预期损失。

在目前衍生品市场中,最成熟的衡量投资组合风险值的系统是SPAN(Standard Portfolio Analysis of Risk),其核心理念与VaR具有异曲同工之妙。该系统是由芝加哥商业交易所(CME)于1988年12月16日,为衡量旗下结算会员头寸的总风险从而确定应收取的保证金金额而推出的。SPAN经过十多年来的不断完善,已经逐渐成为一个全球计算投资组合保证金的行业标准。

上海期货交易所始终将风险管理放在首位,在去年以来期货价格的大幅波动情况下经受了严峻的考验。为进一步提升风险管理水平,上海期货交易所与芝加哥商品交易所(CME)于本月17日在美国博卡拉(Boca Raton)举行的期货业协会年会上正式签署协议引进SPAN。

SPAN与保证金计算

SPAN是一个综合性的风险评估系统,可以精确地计算任意投资组合的总体市场风险,并在此基础上结合交易所的风险管理理念,计算出应收取的保证金。SPAN的核心计算模块由交易所计算并以参数文件的形式每天免费提供给投资者,投资者只要在此基础上输入各自的头寸情况,就可以快捷地在个人电脑上对自己的投资组合进行风险分析,并计算出自己头寸所需要的保证金额度。这种简便的操作特性,使得它在推出之后即成为市场上计算保证金的主流系统,目前全球已经有接近50个交易所或结算组织使用该系统。

为了让SPAN适用于市场的各种情况,并精确计算任意投资组合的保证金,该系统分别测量了下列可能影响保证金额度的因素:

1.标的资产价格的变动;

2.标的资产的价格波动性的变动;

3.时间的流逝;

4.合约的交割风险;

5.不同到期月份合约之间价差的变动;

6.各标的资产之间价格相关性的变动。

在此基础之上,SPAN通过标的资产的市场价格变动与其波动性变动之间的组合来构建未来的市场情形,并求出某一具体投资组合在一段时间之内(一般是一个交易日)所可能遭受的最大损失的期望值。交易所则在此期望值的基础上来确定应收取的保证金额度。

交易所为了计算保证金的需要,会先将投资组合头寸进行分类,把具有相同或者相似标的物商品视为一个商品组合(Combined Commodity)。此外,SPAN又为了计算上的方便,将商品组合进一步归类到各自不同的商品群(Combined Commodity Group)。

SPAN以商品组合为基础计算保证金,因此SPAN先将投资组合的头寸分拆为各自不同的商品组合,并对每个商品组合计算风险值。待求出各商品组合的风险值之后,再求出每个商品群的风险值,最后加总各商品群的风险值,即得到由SPAN所确定的整个投资组合的风险值(SPAN Risk)。

SPAN计算出投资组合的总风险之后,会进一步计算投资组合中的期权净值(Net Option Value)。该值是投资组合中所有期权头寸依据市场价格立即平仓后的现金流量。SPAN将整个投资组合的风险值减去期权净值的金额,作为对客户收取的保证金额度(SPAN Total Requirement)。

而各商品群的风险值,是由价格扫描风险(Scan Risk)、商品组合内的跨月价差风险(Intra-Commodity Spread Risk)以及交割风险(Delivery Risk)加总之后,扣除商品组合间的价差抵扣(Inter-commodity Spread Risk),最后与期权空头的最低风险(Short Option Minimum)比较所得到的较大值。

其中,价格扫描风险是指头寸在多种(一般设置为16种)可能的市场情形下,可能遭受的最大损失;跨月价差风险是指在交易所允许商品组合内的头寸可以抵扣的前提下,不同到期合约价格之间的差异所导致的风险;交割风险是指实物交割中可能产生的风险,在衍生品市场交易中往往体现为商品合约在临近交割期的价格波动性增大;价差抵扣是指同一商品群下不同商品组合间因为价格波动的相关性而产生的某种程度的抵消效果;而期权空头最低风险是对期权空头所要求的最低风险值。

上海期货交易所行情

2004年3月24日

郑州商品交易所行情

2004年3月24日

大连商品交易所行情

2004年3月24日

将同一商品的价格扫描风险值、不同到期月份期货合约与不同到期月份期权合约的跨月价差风险值(仅仅按照被抵扣头寸额来计算)、期货合约在其交割月与期权合约在其到期月的交割风险值(分净头寸额与被抵扣头寸额两种情形计算)三个风险值加总,得到的结果与期权空头头寸所要求的最低风险值进行比较,其中的较大值就是该商品组合的风险值。

将所有商品组合的风险值加总,再减去商品组合之间的价差抵扣,就是该投资组合的风险值。一般而言,只有同一商品群内的商品组合之间具有价差抵扣。将投资组合的风险值减去整个投资组合中期权净值的金额,就得到了最终的交易所对客户所收取的保证金额度。

SPAN的参数设置

不同的市场具有不同的市场特性,不同的交易所也具有不同的风险管理理念与具体措施,SPAN通过参数文件来体现这种个性化。

SPAN的参数文件主要包含价格扫描区间(price Scan Range)、波动率扫描区间(Volatility Scan Range)、同商品跨月价差(Intracommodity Spread Charge)、交割月保证金提高(Delivery Charge)、期权空头最低保证金(Short Option Minimum)、商品组间保证金信用抵扣(Intercommodity Spread Credit)六个方面的参数。

1 价格扫描区间

价格扫描区间参数用来反映在特定期间内以及特定的置信区间下,某一具体标的资产价格的波动范围,确定此参数的基础是确定标的资产价格的分布曲线。

绝大多数衍生品市场的标的资产价格行为都呈现出高峰厚尾的形态,并往往具有一定的偏度,因此它们的分布就不是一个正态分布。而关于非正态分布的分析往往过于复杂(也不能保证标的资产价格行为与某一分布的吻合程度就优于正态分布),加上市场特性往往随时间的变迁而改变,因此需要考虑采用Rosenblatt估计或者核估计的非参数估计方法来确定标的资产价格的分布曲线。

标的资产价格的分布f(x)的Rosenblatt估计为

中h称为窗宽,K(u)称为核函数(一般采为对称的密度函数)。

在实际应用中,一个关键的因素是对窗宽h的确定。h越大,则曲线光滑得越好,但可能失去有用信息导致拟合效果不好;反之,h越小,则拟合越好,但可能光滑得不够,也可能无法把有用信息与干扰分开。

选取窗宽不宜采用最常见的极小预测均方误差准则,而应该考虑诸如交叉核实法的准则。交叉核实法中的加权预测均方误差为其中X′[,i]是基于(n-1)个数据的对X[,i]的非参数估计ω(X[,i])是为消除极端值对窗宽选取的影响而设定的一个权函数,其选取依赖于我们对估计分布的曲线形状的要求。

基于距离现在越远的历史数据对预测的贡献应该越小的理念,我们还可以进一步对上述结果进行诸如指数平滑的修正处理。

有了标的资产价格分布之后,就可以很方便地获得在特定的期间内(比如一个交易日)以及特定的置信区间下(比如95%)价格的波动范围,也就是价格扫描区间参数。

SPAN系统一般模拟16种市场情形,这16种市场情形就是标的资产的市价上涨或者下跌价格扫描区间的1/3、2/3、1倍、3倍的情形与标的资产价格波动率变化情形组合而得的。

价格扫描区间原则上每天计算一次,但如果新的价格扫描区间在原有参数基础上未超过某一比例的变化时,则保持价格扫描区间参数不动。在某些特殊市场风险情形下,价格扫描区间参数可作相应的调整。值得注意的一点是,当市场具有每日价格涨跌停板限制时,对于触板数据需要进行修正处理。

2.波动率扫描区间

波动率扫描区间参数用来反映在特定期间内及特定的置信区间下,某一具体标的资产价格的波动率的变化范围。确定此参数的基础是确定标的资产价格波动率的分布曲线。

这里的波动率一般是指由期权价格反演出的隐含波动率,一般采用期权的结算价格作为数据样本来反演隐含波动率。而期权的结算价格一般是采用期权市场实际数据结合期权定价模型的理论价格而确定的。

由期权价格的历史数据,我们可以期权定价模型反演隐含波动率,从而估计出标的资产价格波动率的分布曲线,并在此基础上求出在特定的期间内以及特定的置信区间下波动率的变动范围,也就是波动率扫描区间参数。

SPAN系统一般模拟16种市场情形,这些情形就是标的资产价格的波动率上升或者下降一个波动率扫描区间的情形与标的资产价格变化情形组合而得的。

波动率扫描区间原则上每天计算一次,但如果新的波动率扫描区间在原有参数基础上未超过某一比例的变化时,则保持波动率扫描区间参数不动。在某些特殊市场风险情形下,波动率扫描区间参数可作相应的调整。

3.同商品跨月价差

同商品跨月价差参数主要用来反映在特定期间内以及特定的置信区间下,相同商品的不同到期合约价格之间的差异,确定此参数的基础是对合约价差分布曲线的确定。

由于期货合约与期权合约的价格行为一般都不呈正态分布,我们没有理由认为不同到期合约的价差就会服从正态分布,因此需要考虑非参数估计方法。

我们可以仍然采用Rosenblatt估计或者核估计来确定跨月价差的分布。其中,最优窗宽由交叉核实法来确定,而核估计中的核函数一般采用对称的密度函数。

在跨月基差的分布曲线基础上,我们就可获得在特定期间内以及特定的置信区间下不同合约价差的波动范围,也就是跨月价差参数。

跨月价差原则上每天计算一次,但如果新的跨月价差在原有参数基础上未超过某一比例的变化时,则保持跨月价差参数不动。在某些特殊市场风险情形下,跨月价差参数可作相应的调整。

4.期权空头最低保证金

在标的资产价格发生较大波动的时候,接近平值位置的虚值期权可能一跃成为实值期权,从而导致期权空头的巨大亏损。期权空头最低保证金主要就是用来防范期权空头的上述风险。在相同的商品期货基础之上,不同的期货合约月份对应若干不同执行价格的期权合约。如果这些期权合约在前日结算时为虚值期权而在当日结算变为实值期权,则将这些期权结算价的价差中的最大值作为该商品系列的当日期权空头最大损失。对过去一段时间的当日期权空头最大损失进行数据采样(剔除零值),以Rosenblatt估计方法或核估计的非参数方法来确定期权空头最大损失的分布。

有了期权空头最大损失的分布之后,就可以很方便地获得在特定的置信区间下的期权空头发生的最大损失范围。交易所在此结果的基础上,结合期权报价中的买卖价差来确定期权空头最低保证金。

期权空头最低保证金原则上每月计算一次,但如果新的期权空头最低保证金在原有参数基础上未超过某一比例的变化时,则保持该参数不动。在特殊市场风险情形下,期权空头最低保证金可作相应的调整。

5.交割月保证金提高

交割月保证金提高参数主要是为了防范交割风险,对交割月的定义可以从交割月扩展到交割前若干月。SPAN系统中交割月保证金提高参数又分为有抵扣合约交割月保证金提高与无抵扣合约交割月保证金提高两类参数。有抵扣合约交割月保证金提高用于那些具有方向相反的邻近合约与之抵扣的交割月合约,无抵扣合约交割月保证金提高用于那些无邻近合约与之抵扣的交割月合约或者抵扣之后的交割月头寸净额。

交割月保证金提高的确定主要取决于标的资产与衍生品合约之间的基差以及衍生品合约的价格在交割月的分布曲线。期货交割月保证金主要取决于现货与期货之间的基差以及期货合约价格在交割月的分布;期权交割月保证金主要取决于期权价格在到期月的分布曲线。

交易所在基差分布曲线与交割月价格波动分布曲线的基础上,参考价格扫描区间参数,最后确定无抵扣合约的交割月保证金提高,并以一个小于1的比例再确定有抵扣合约的交割月保证金提高。

由于期货合约在交割月的价格行为与期权合约在到期月的价格行为一般都不呈现为正态分布,我们考虑以非参数估计方法估计其价格分布。

同样,因为期货合约与现货合约的价格行为一般也不呈现为正态分布,我们没有理由认为期货与现货之间的基差会服从正态分布,因此也应该考虑非参数估计方法来估计基差分布曲线。

诸如Rosenblatt估计、核估计等非参数估计方法中,核函数的选取与窗宽的确定对分布曲线的拟合非常关键,但是在实际应用中,这些因素的确定往往非常困难且非常繁琐。而期货交割月保证金提高的最终确定需要基差分布、交割月价格分布以及价格扫描区间参数三方面的权衡,期权交割月保证金提高的最终确定需要到期月价格分布以及价格扫描区间参数两方面的权衡,因此对其中单独一个分布的非参数估计可考虑采用略为简单的近邻估计方法。

对每个z选取一个以z为中心且长度随机的区间,而区间内所包含的样本点个数是固定的k,则基差分布、交割月价格分布、到期月价格分布的近邻估计为f(z)=k/2nd[,k](z),其中的窗宽2nd[,k](z)是个随机变量,而[x-d[,k](z),x+d[,k](z)则为包含k个样本点的最短区间。

有了基差分布、期货交割月价格分布、期权到期月价格分布,就可以很方便地获得在特定的置信区间下(比如95%),基差、交割月或者到期月价格的波动范围。交易所再结合价格扫描区间参数来最终确定交割月保证金提高。

交割月保证金提高的确定需要参考价格扫描区间参数,因此原则上每天确定一次,但如果新的交割月保证金提高在原有参数基础上未超过某一比例的变化时,则保持该参数不动。在特殊市场风险情形下,交割月保证金提高可作相应的调整。

6.商品组间保证金信用抵扣

在同一个商品群下的商品组合之间,其价格行为往往具有较强的相关性,且大多呈现正相关。这种价格上较强的相关性为相似商品之间保证金的抵扣提供了依据。

因此,SPAN系统允许同一商品群下的方向相反的商品合约之间在保证金上具有一定的抵扣比例,其具体的抵扣比例就是由商品组间保证金信用抵扣来反映的。商品间价格相关性越低,商品组间保证金信用抵扣比例就越低,当商品间价格呈现弱相关性时,商品组间一般不再给予任何保证金信用抵扣。

SPAN系统中投资组合的风险值是加总所有商品组合的风险值后,再减去商品组间保证金信用抵扣额度来得到的。而商品组间保证金信用抵扣参数实际上是一个比率,需要乘以一个价格系数才能得到商品组间保证金信用抵扣额度。由于两个商品共用一个商品组间保证金信用抵扣参数,价格系数就不能是两个商品价格中的任意一个,从而必须确定一个共用的价格系数。这个价格系数就是SPAN系统中的复合Delta参数,是依据两个商品的合约在不同市场情形下的历史价格表现来估计的。

商品组间保证金信用抵扣原则上每天计算一次,但如果新的信用抵扣比率在原有参数基础上未超过某一比例的变化时,则保持该参数不动。但在诸如商品组间价格产生巨大背离等特殊市场风险情形下,可降低某两个商品组间保证金信用抵扣比率,甚至不给予任何信用抵扣。

SPAN系统不仅仅是一个保证金计算系统,同时也是一个基于投资组合风险价值评估的市场风险模拟与分析系统,可为包括期货、期权、现货、股票及其任意组合的金融产品进行风险评估。在风险评估基础上形成的保证金结果从风险管理角度而言更为有效,从而在风险可控的前提下提高了资本的使用效率。交易所也可以通过模拟市场变化,迅速搜寻出存在潜在风险的客户,并在此基础之上实时了解交易所面临的风险大小与概率,从而为交易所在特殊市场风险情形下果断作出决策提供了风险管理层面上的依据。

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

衍生产品市场的SPAN系统与风险管理_投资组合论文
下载Doc文档

猜你喜欢