理解中国的实际汇率:一价定律偏离还是相对价格变动?,本文主要内容关键词为:汇率论文,定律论文,中国论文,价格变动论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
JEL Classification:F31,F41
一、引言
实际汇率,又称真实汇率,是指剔除通货膨胀因素以后的汇率水平,反映了国内外一揽子商品的相对价格。实际汇率范畴的商品,在理论上通常被分为可贸易品和不可贸易品。可贸易品是指可以在国际市场上自由交换的商品,如果交易成本为零,由于消费者跨国套利行为的存在,可贸易品价格应该服从一价定律;不可贸易品是指难以在国际市场进行交换的商品,其价格主要由国内因素决定。因此,实际汇率同时受到国际与国内市场的影响。一个自然的问题是,人民币实际汇率的变动在多大程度上是由国际市场决定的?又在多大程度上是由国内市场决定的?
本文的第一个贡献是,明确了对人民币实际汇率波动起主导作用的是可贸易品在国际市场上的价格变化,而不是国内市场中可贸易品与不可贸易品相对价格变化。这一结论,与强调国内市场(尤其是服务业发展)对实际汇率影响的传统观点有所不同。本文的另一项贡献是,以人民币实际汇率的分解结果为基础,解释了巴拉萨-萨缪尔森效应在中国失灵(卢锋、刘鎏,2007)的现象。本文通过放松巴拉萨-萨缪尔森定理的关键假设——可贸易品价格服从一价定律,重新讨论了“相对相对”劳动生产率差异对实际汇率的影响。研究结论表明,忽视可贸易品偏离一价定律因素是导致巴萨效应不成立的直接原因。毕竟,中国是一个开放中的大国,国内价格水平稍有变动,都会使得可贸易品的国内定价与世界市场价格出现偏离,所以价格接受者假定基本不成立。如果把可贸易品偏离一价定律因素重新予以考虑,卢锋和刘鎏(2007)提出的“人民币实际汇率之谜”将得以破解。但是,即便巴萨效应成立,由于可贸易品偏离因素对人民币实际汇率变动起决定性作用,巴萨效应的影响也是次要的。
文章的具体结构如下:第二部分是实际汇率分解的文献综述;第三部分利用1997年1月至2010年9月的数据,对人民币实际汇率进行分解;第四部分在分解结果的基础上,重新估算巴拉萨-萨缪尔森效应;最后一部分是结论。
二、实际汇率分解的文献综述
经典的汇率理论对于是否应该在理论模型中考虑不可贸易品因素,始终争论不休。Engel(1993,1999)通过分解实际汇率,开创性地对这个问题做出了经验上的回答。他从实际汇率的定义式出发,对实际汇率进行了分解:
其中,rer是实际汇率的对数形式(一单位外币表示的本币价格),ner是名义汇率的对数形式,p是本国价格总指数的对数形式,是本国可贸易品价格指数的对数形式,是本国不可贸易品价格指数的对数形式,α是本国不可贸易品占总体价格指数的比重。相应的外国变量加星号(*)表示。根据公式(1),实际汇率可以分解为两部分:第一部分,反映可贸易品在国内外的价格差异,即文献中经常提及的“一价定律偏离”因素。由于跨国交易成本(包括运输成本、时间成本等)的存在,这一部分通常不为零。如果一价定律偏离是正数,则意味着本国可贸易品的价格偏低;反之,若是负数,则意味着外国可贸易品的价格偏低。第二部分,反映的是两国不可贸易品与可贸易品相对价格的差异,通常称之为“相对相对”价格变动。①如果国际环境没有显著变化,那么后一因素完全反映了国内相对价格的变化,因此,文献中有时也将之定义为内部实际汇率。②根据这一分解方法,Engel(1999)研究了美国与10个主要OECD国家的双边实际汇率走势,发现在大多数情形下,“相对相对”价格变动部分对实际汇率的影响不超过10%,实际汇率波动的绝大部分来源于一价定律偏离因素。这一结论在许多后续研究中得到验证,例如Rogers & Jenkins(1995)。这一结论是惊人的,它颠覆了传统理论对于实际汇率的认识。如果不可贸易品相对价格因素真的微不足道的话,那么无论是理论建模,还是政策研究,都只需要将注意力放在可贸易品偏离一价定律上面即可。③
另一方面,可贸易品部门遵循一价定律的假设确实也在不断受到挑战。实证方面代表性的文献包括Lapham(1995)、Rogers & Jenkins(1995)、Engel & Rogers(1996)、Knetter(1997),他们的研究结论表明,即便是在贸易品部门,一价定律通常也不成立。这在某种程度上佐证了Engel(1993,1999)的研究。但是,就研究方法本身而言,Engel(1993,1999)的分解还有许多值得推敲的地方。第一,他的分解方法需要同时计算可贸易品与不可贸易品价格。但是,各国关于不可贸易品价格的统计是较弱的,尤其是服务业,非标准化的特性使得其很难统一度量。第二,Engel的分解方法依赖于可贸易品和不可贸易品相对权重计算,如果权重的计算结果不准确,极有可能导致最终的分解结果出现较大偏差。此外,Engel在解释美元与加元双边实际汇率波动的时候,发现不可贸易品的相对价格变动对实际汇率的影响大于一价定律偏离因素的影响,这与美元相对其他国家的实际汇率分解结论完全不同,但文章中并没有对此做进一步的解释。
为了解决上述问题,Betts & Kehoe(2006,2008)在Engel(1999)的基础上,提出了一种新的分解方法(第三部分会详细介绍),不再需要同时获取可贸易品与不可贸易品价格的数据,而是只需要总体物价水平和可贸易品价格水平的数据,即可对实际汇率进行分解。同时,这种方法也不涉及可贸易品与不可贸易品的相对权重。分解方法的改进,大大简化了经验研究的难度。他们的研究结果,再一次证实了Engel(1993,1999)的结论,即可贸易品偏离一价定律因素是解释美国实际汇率波动的主要原因。进一步,他们还根据美国与不同国家的贸易额大小区分样本,发现两个国家的贸易越紧密,可贸易品对一价定律偏离的影响就越弱;反之,则一价定律偏离因素影响更强。这就解释了为什么美元与加元的实际汇率分解结果与众不同。美国和加拿大同属北美自由贸易区,双边贸易量惊人,所以国内相对价格变动对实际汇率的走势,就显得更加重要。不过,他们的分析并不适用于解释中美实际汇率。作为重要的双边贸易伙伴,中国与美国的贸易量在近些年迅速上升,可是本文的研究却发现,一价定律偏离因素对实际汇率的影响仍然很高。可见,仅仅从双边贸易额的角度理解实际汇率的分解结果,是不充分的。本文的研究正是希望弥补文献中关于中国实际汇率理解的空缺。
三、人民币实际汇率分解
在这一部分,本文希望以中国为基准,对人民币与其他国家货币的双边实际汇率进行分解,试图回答,在人民币实际汇率波动中,究竟是可贸易品对一价定律的偏离是波动的主要来源?还是不可贸易品与可贸易品相对价格的变化是波动的主要来源?在过去研究的基础上,本文改进了可贸易品价格指数的计算方法,利用人民币价格水平的月度数据进行研究,考察人民币实际汇率波动的来源。
1.分解方法
本文采用Betts & Kehoe(2006,2008)的分解方法,这种方法从实际汇率的对数式出发进行分解:
是“相对相对”价格变动部分的对数形式。该分解方法的最大好处在于,研究者只需要获得总价格指数和可贸易品价格指数,就可以对实际汇率进行分解,而无需使用不可贸易品价格指数。这使得数据的可得性和精确度都大大上升。
文献中,学者们使用的分解方法可以总结为四种:相关系数法、标准差比例法、方差分解法和均方误差分解法。由于前两种方法没有将分解结果标准化,不利于横向比较,所以本文采用后两种方法⑤进行分解。采用后两种方法的另一个好处是,只需要检验任一部分的分解结果是否超过0.5,就能判断它是不是实际汇率波动中的相对更重要的部分。
2.数据选取
实际汇率分解的关键是估算一般物价指数和可贸易品价格指数,数据的选取可能会对最终结果产生显著影响。本小节重点讨论数据选取问题。
一般物价指数可以选择GDP平减指数(GDP Deflator)或者消费者物价指数(Consumer Price Index,CPI)。通常认为,GDP平减指数反映经济总量活动的价格变化,较之消费者物价指数更加全面。但就中国实际情况而言,GDP平减指数缺乏月度数据,难以与可贸易品价格指数匹配。所以,CPI是更为适宜的指标。⑥
可贸易品价格指数的估算是研究的难点。Betts & Kehoe(2008)建议使用生产价格指数(以PPI为主要代表)近似计算可贸易品价格指数,因为这一指数能够很好地从生产的角度衡量产出价格,充分排除了不可贸易的产品以及其他包含在CPI中的服务。不仅如此,与CPI数据一样,PPI数据的可得性较强,覆盖的样本国家以及时间区间都很多。通过这种方法,本文最终获得67个国家(含中国)1997年1月至2010年9月的数据。国外数据大都来自国际货币基金组织IFS数据库,中国的数据来自CEIC数据库。但是,生产价格指数只是考察货物在批发环节的价格,而实际汇率的应有之意是衡量可贸易品在零售环节的国际交换价格,这就使得研究结果可能出现偏误。为了规避这一问题,本文还使用加权平均的进出口价格指数对可贸易品价格进行估算⑦,估算的具体公式是:
公式中,IPI(Import Price Index)和EPI(Export Price Index)分别为进口价格指数和出口价格指数,IV(Import Volume)和EV(Export Volume)分别为进口数量和出口数量。这种做法使用实际发生的贸易产品近似替代真实的可贸易产品,虽然也存在囊括不全面的问题,但反映的是商品的零售价格,较生产者价格合理(Burstein et al,2006)。由于公布进出口价值指数和实际数量的国家并不如公布PPI的国家广泛,本文最终获得了22个国家或地区(含中国)的数据,数据区间为1997年1月至2010年9月。外国的贸易数据来自国际货币基金组织IFS数据库,国内的贸易数据来自海关总署出版的《中国对外贸易指数》。
图1、2列出了不同方法估算的中美两国可贸易品价格指数随时间的变化趋势。不难看出,2000年以后,两种计算方法的结果十分接近,但是2000年以前,二者却呈现出截然不同的走势。对于中国而言,依据PPI计算的可贸易品价格指数更低,而对美国却是完全相反。造成这一现象的原因,可能是产品生产从中间到零售环节的成本差异以及净出口特征差异。一方面,美国的主要消费品是依靠进口国外的低廉产品,而这部分产品并不在国内生产,所以美国本土的PPI计算高估了美国的可贸易品产品价格,对于中国则恰好相反;另一方面,美国从中间环节到零售环节的“运输”成本⑧较低,所以处于零售端的进出口价格指数衡量的可贸易品价格指数也相对较低。两种指标的差异性在样本中的大多数国家或地区(下同)中都会遇到,所以,单纯采用其中任何一种算法,都可能带来偏误,最好的办法是同时使用二者,观测最终结果是否会有所不同。图1和图2中还可以看出,中国的可贸易产品价格上涨速度快于美国的可贸易产品价格,恰恰说明中国产品的“可贸易部门”相对于美国在不断升值。
基于总价格指数以及可贸易品价格指数,很容易计算中国与各国的双边实际汇率(外部实际汇率)与内部实际汇率(“相对相对”价格)。本文选择实际汇率的间接标价法,即一单位人民币可以换取多少美元。这样,实际汇率上升表示升值,下降表示贬值。图3和图4分别画出了中美双边实际汇率与中日双边实际汇率(外币/本币)的时间序列图。外部实际汇率与内部实际汇率都是月度数据,并且已经取对数。在中美双边实际汇率中,外部实际汇率与按照PPI计算的内部实际汇率走势非常接近,但是与按照进出口贸易价格加权计算的内部实际汇率走势明显不同。这可能是因为,中国出口到美国的产品与在国内销售的可贸易产品,无论是质量还是品种上都有较大差异,所以两种方法的实际汇率差别很大。但是,按照不同方法计算的中国与日本的内部实际汇率的走势,却高度接近,说明这两种方法仍然具有很多相似之处。
3.基本分解结果
根据方差分解和MSE分解法,本文对人民币实际汇率从1997年1月至2010年9月的变动进行了分解,结果如表1、2。其中,表1中选择PPI作为可贸易品价格指数,表2选择加权平均的进出口价格指数作为可贸易品价格指数。表中的数字是“相对相对”价格变动(即内部实际汇率)对人民币实际汇率波动的贡献。由于方差分解法和MSE分解法已经将实际汇率波动标准化为1,所以一价定律偏离因素对实际汇率的贡献是1减去表中相应数字。
结果显示,在中国与绝大多数国家(地区)的双边实际汇率波动中,“相对相对”价格波动只能解释很小的一部分(低于0.5),远远小于一价定律偏离的解释力。在以PPI作为可贸易品价格指数的计算结果中,66个国家中有59个国家的一价定律偏离因素较之相对价格因素更重要;在以加权平均进出口价格指数作为可贸易品价格指数的计算结果里,21个国家(地区)中有18个国家(地区)也是如此。虽然两种方法计算得到的分解贡献度数值不尽相同,但是总体上的结论相当一致。但是,有两点需要注意:第一,双边实际汇率的分解结果仍然与对象国有关。中美实际汇率与相对价格变化(即图3中的内部真实汇率)的波动方向一致,说明相对价格变动对中美实际汇率的贡献较大;中日实际汇率波动较为剧烈,但是相对价格波动则相对平稳(参见图4),表明相对价格变动对中日实际汇率波动的贡献较小。第二,不同的分解方法和可贸易品的计算方法会影响最终结果。以中日实际汇率分解为例,在四种不同的计算结果中,相对价格所占贡献分别为0.03、0.18、0.16、0.31,均小于半数,但是按照加权平均贸易价格计算可贸易产品的结果,明显要大于按照PPI计算可贸易品价格的结果。其他国家的结果也类似。这说明,以PPI作为可贸易产品价格,极有可能会高估可贸易品价格偏离一价定律的影响。
4.中国实际汇率分解结果的影响因素
上一小节的研究结果表明,可贸易品偏离一价定律因素在实际汇率波动中具有很高的解释力,而不可贸易品相对价格的影响很小。但是,相对于不同的国家,分解结果存在很大差异。例如,相对价格变动能够解释中美实际汇率的22%,却只能解释中日实际汇率的4%(以PPI和方差分解为例)。那么,分解结果背后的因素究竟是什么呢?Betts & Kehoe(2006)基于美国数据的回答是贸易额,因为贸易规模越大,市场竞争越充分,可贸易品偏离一价定律的程度自然会下降。但是,这一点对中国成立吗?在本小节,本文试图对此做出回答。
在回答这一问题之前,首先利用中国与其他国家的双边贸易额作为权重,加权平均计算不可贸易品对人民币实际汇率波动的整体影响⑨,计算的结果列在表3第二列。可以看出,无论采用PPI作为可贸易品物价指数,还是选择进出口价格加权平均计算可贸易品物价指数;无论使用方差分解法,还是MSE分解法,最终计算结果高度一致:相对价格变动部分对实际汇率的影响,较之可贸易品偏离一价定律因素的影响,是更小的。一价定律的偏离部分在整体实际汇率波动中所占的比重大约为60%—80%。但是,这一比例,较之Engel(1999)以美国为基准估算出的90%,仍然要小很多,说明相对价格变动对人民币实际汇率的影响,超过其对美元实际汇率的影响。后文将会指出,这是因为中国和美国处在不同的经济发展阶段所致。
接下来,本文试图通过区分中国相对不同国家的样本(表3中的第三列至第十列),探讨哪些因素导致“相对相对”价格对中美实际汇率的影响大于其对中日实际汇率的影响。Betts & Kehoe(2008)提出双边贸易额和人均实际GDP差距是重要的,因此本文将考虑这两个指标。除此以外,本文还考虑了服务业相对比重和农业人口比重对人民币实际汇率分解结果的影响。请注意,这里除了各国与中国的贸易额考虑的是绝对规模,其他三个指标均采用相对值,即中国相对于其他国家的人均实际GDP(中国人均实际GDP/国外人均实际GDP)、相对于其他国家的服务业比重(中国服务业占GDP的比重/国外服务业占GDP的比重)以及相对于其他国家的农业人口比重(中国农业人口占总人口比重/国外农业人口占总人口比重)。下面,逐一加以分析。
(1)贸易额
按照Betts & Kehoe(2006)的观点,两国之间的贸易关系越密切,国际市场竞争越激烈,可贸易品价格的套利就越充分,那么偏离一价定律部分的贡献相对较小,“相对相对”价格变化对实际汇率的贡献更大。表3的第三列和第四列显示,与中国有较高贸易额的国家,“相对相对”价格对实际汇率的影响更小,这与Betts & Kehoe(2008)的结论恰好相反,可能的原因是:中国对主要国家的出口总是伴随汇率低估,而后者往往体现在名义汇率偏离一价定律水平。
(2)相对人均实际GDP
一般认为,在一国的快速赶超时期,相对价格往往会发生较大变化。如果中国相对于其他国家的人均实际GDP越低,意味着赶超空间越大,此时相对价格对双边实际汇率的影响理应更强;若是相对于其他国家的人均实际GDP较高,则中国与这些国家的发展阶段类似,甚至人均经济实力优于这些国家,相对价格的影响会较弱。表3中第五列和第六列显示,中国与先进国家样本的双边实际汇率更多地由国内相对价格驱动,这与理论推断一致。
(3)服务业相对比重
服务业一般被视为不可贸易品,如果两国之间服务业的比重相差较大,意味着不可贸易品和可贸易品相对价格的权重很高,相对价格变动对实际汇率波动的贡献应该较大。表3中第七列和第八列的估算结果表明,按照PPI与进出口价格加权计算可贸易品的结果是完全相反的,不能得到一致性结论。造成这一现象的原因,可能与服务业因素在PPI与进出口价格指数中的影响差异有关。
(4)农业人口相对比重
巴拉萨-萨缪尔森效应成立的前提是劳动力市场自由流动,但是发展中国家普遍存在的农村剩余劳动力,往往会抑制城市部门的工资上涨,所以农村劳动人口比重是影响国内相对价格发挥作用的重要变量(王泽填、姚洋,2009)。表3中第九列和第十列的估算表明,以加权的进出口价格指数作为可贸易品价格的测算结果支持这一结论,但是以PPI作为可贸易品价格指数的测算结果不支持这一结论。所以,无法得出一致性的结论。
综上所述,与中国贸易额越大、经济发展阶段相对更高的国家,其货币与人民币的双边实际汇率的决定因素中,不可贸易品的贡献越高。服务业相对比重、农业人口相对比重因素难以得出一致性的结论,这可能与可贸易品价格指数的测算误差有关,是今后研究需要解决的问题。
四、巴拉萨-萨缪尔森效应的再估计
实际汇率分解理论,可以运用于巴拉萨-萨缪尔森效应的估计。巴拉萨-萨缪尔森定理认为,一国经济发展通常伴随可贸易品部门劳动生产率的相对增长,进而引发实际汇率升值。这一理论被视为观察开放经济成长过程中实际汇率走势的重要依据(卢锋、韩晓亚,2006)。然而,改革开放至今,中国的制造业相对劳动生产率大幅度增加,人民币实际汇率依据不同度量标准贬值一倍半到三倍,成为中国经济增长的谜题之一(卢锋,2007)。同样的问题,在胡援成、曾超(2004)等研究中也有所体现。因此,很容易得出如下结论:中国相对较高的劳动生产率增长并不能最终导致人民币实际汇率的升值,即巴萨效应在中国不成立。
许多学者都试图解释巴萨效应在中国失灵的原因。目前最流行的解释有两种:一种是认为现有研究没有考虑体制转型等问题,代表作是卢锋(2007);另一种解释是认为可贸易品部门的工资上涨受到农村剩余劳动力的抑制,巴拉萨-萨缪尔森效应发挥作用的渠道没能得到充分利用,代表作是杨长江(2003)和王泽填、姚洋(2009)。唐翔(2008)另辟途径,从劳动力存在异质性的角度,提出“富人社区”效应,试图解释为什么富裕国家的非贸易品价格相对较高,从而区别传统的巴拉萨-萨缪尔森效应。本文认为,上述解释都不是问题的关键,忽视可贸易品偏离一价定律才是“导致”巴萨效应失灵的重要原因。
为了看清这一点,回忆巴萨效应(Balassa,1964;Samuelson,1964)的基本原理:假设可贸易产品服从一价定律,当一个国家经历快速发展时,制造业(可贸易品)部门的劳动生产率相对快速上升,由于可贸易品价格被一价定律所决定,可贸易品部门的工资必然上涨。由于假定国内劳动力市场自由流动,这将带来服务业(不可贸易品)部门的工资相应上涨,而服务业部门的劳动生产率上涨相对缓慢,不可贸易品价格上升。此时,一般价格水平上涨,实际汇率升值。不难看出,整个逻辑过程的初始假定是可贸易品价格服从一价定律。然而,本文第二部分的结论,正是要说明这一假设不仅不成立,而且在整个实际汇率波动中,一价定律偏离所占比重是相当大的,忽略这一部分进行计量经济分析,必然存在遗漏变量问题。具体而言,考虑如下真实的模型:
代表相关变量的样本统计均值。所以,遗漏可贸易品偏离一价定律带来的偏误有二:(1)非一致性。只要可贸易品偏离一价定律的部分与相对价格变动部分的相关系数不等于零,模型估计的一致性就不能成立;也即是说,我们经常观测到巴萨效应的符号与理论预期相反,可能正是遗漏变量问题所致。(2)非有效性。系数β的估计方差变大,这会增加估计系数通过显著性检验的难度。
本文试图在修正模型的设定下,对系数β进行估计,然后观测它与之前的研究结果的区别。本文的研究样本包括中国与34个国家(地区)1986-2008年的双边实际汇率、“相对相对”劳动生产率以及按照PPI和进出口加权平均价格计算的可贸易品偏离一价定律的程度的数据(来自第三部分)。“相对相对”劳动生产率的计算方式如下:
分别是世界其他国家的制造业与服务业的劳动生产率。中国以外的劳动生产率数据来自OECD数据库,中国的数据来自更新后的卢锋、刘鎏(2007)。需要指出的是,本文在计算“相对相对”劳动生产率时,只考虑制造业与服务业的劳动生产率。理论上,国家三大产业分类包括农业、工业与服务业,农产品也具有可贸易性。不过,一方面,农产品的单位运输成本较高,收入弹性较低,在整个贸易结构中所占比重并不高;另一方面,产业内分工是当代贸易增长最快的领域,农产品受限于自身工序和环节,难以通过不同国家和经济体之间的空间分布来发展产业内分工和贸易,所以这类产品的可贸易性并不强。卢锋、刘鎏(2007)将不同经济部门的可贸易性依据位置排序(如图5所示),可以看出,制造业可贸易性最强,服务业的可贸易性最弱,农业的可贸易性介于二者之间。为了凸显巴萨效应的作用,同时也是由于数据可得性所限,本文在计算“相对相对”劳动生产率时,只是选取制造业与服务业的劳动生产率。(11)
方程(4)是计量估计的基本模型设定。根据第二部分的推导,可贸易品偏离一价定律的程度是实际汇率的一部分,而这一部分与巴萨效应没有关系,所以理论上γ=1(12)。通过移项,(4)式可以改写为:
实际回归的方程是(6)式,结果被列在表4中。表4的前两列是不考虑可贸易品偏离一价定律因素的回归结果,即模型(5)的回归结果。OLS估计(第一列)结果不支持巴萨效应,但是在固定效应模型估计(第二列)中巴萨效应显著成立,结果并不稳健。表4的第三列和第四列增加以PPI作为可贸易品价格指数计算的一价定律偏离因素,利用(6)式重新进行OLS估计和固定效应模型估计,结果的稳健性明显增强,巴萨效应在两种模型设定下都显著成立;第五列和第六列增加以进出口价格指数计算可贸易品价格的一价定律偏离因素,也发现无论是最小二乘法还是固定效应的估计中,巴萨效应仍然显著成立。结果证明,在控制可贸易品偏离一价定律因素的情形下,巴萨效应在中国明显是发挥作用的。
接下来,本文分别考察人民币相对于发达国家和发展中国家的实际汇率与“相对相对”劳动生产率的关系。表5与表6分别列出了相应的回归结果。如果不考虑一价定律偏离因素,在区分发展阶段样本以后,回归的结果明显不支持巴萨效应,OLS回归的系数是负数,固定效应模型的估计系数也不显著。可是,一旦考虑一价定律偏离部分,中国与发达国家之间的实际汇率明显服从巴萨定理的预测,无论OLS估计还是固定效应模型估计,结果都是显著为正。中国与发展中国家的实际汇率也符合巴拉萨-萨缪尔森定理的预测,但是如果以PPI作为可贸易品价格,固定效应估计的显著性明显下降。这有可能是因为在本文的研究样本中,发展中国家的数量太少,添加固定效应导致自由度减少,从而估计有效性大幅度降低所致。
关于中国实际汇率是否满足巴拉萨-萨缪尔森效应的另一项争论是,巴拉萨-萨缪尔森效应在汇率制度调整前后是否发生变化?卢锋(2006)认为,1998年亚洲金融危机至2005年汇改期间,缺乏弹性的汇率制度导致人民币实际汇率的走势违背了巴拉萨-萨缪尔森效应。为了甄别这一点,本文进一步分时间阶段考察巴萨效应在中国的成立性。改革开放以后,中国的汇率体系经历过三次重要变革,第一次是1994年的外汇管理体制改革,第二次是1998年亚洲金融危机以后开始的钉住美元时代,第三次是2005年的汇率制度改革。因此,本文将全部样本分为1993年以前、1994-1997年、1998-2004年、2005年以后四个时间段的数据,检验巴萨效应。鉴于分拆样本以后的样本量有限,表7中只列出OLS估计的结果。(13)估计的结果表明:(1)1986-1993年期间,在不控制一价定律偏离的情况下,中国数据并不支持巴拉萨-萨缪尔森定理;但是在考虑一价定律偏离因素以后,巴萨效应显著成立。这一点很有意思,因为中国的汇率体制远远没有实现市场化,可是巴萨效应仍然在其中发挥作用。(2)1994-1997年期间,无论是否控制一价定律偏离因素,巴萨效应都是成立的。(3)1998-2004年期间,如果不控制一价定律偏离因素,实际汇率与“相对相对”劳动生产率的关系不显著;但是在控制这一因素以后,巴拉萨-萨缪尔森定理显著成立。(4)2005-2008年期间,如果不控制一价定律偏离因素,实际汇率与“相对相对”劳动生产率的关系不显著;在控制一价定律偏离因素以后,“相对相对”劳动生产率与实际汇率之间呈现负相关关系,巴萨效应仍然不成立。造成这一现象的可能原因是,在2005-2008年期间,“相对相对”劳动生产率增加并不快,但是实际汇率却“弥补性”地快速升值,所以表现出巴萨效应再次违背。如果时间进一步延长,巴萨效应会再次成立。
五、结论
本文将人民币实际汇率分解为可贸易品偏离一价定律部分和“相对相对”价格变动部分,发现可贸易品偏离一价定律因素对实际汇率波动的贡献达到60%—80%,而“相对相对”价格变动的影响只占20%—40%。由于经济的相对发展阶段是解释这一分解结论的重要因素,所以在未来很长一段时间内,可贸易品偏离一价定律仍然是人民币实际汇率波动的主要因素。本文并未就可贸易品偏离一价定律的决定因素做出进一步的探讨。文献中通常认为,运输成本和针对市场定价行为是导致可贸易品偏离一价定律的重要原因(杨盼盼、徐建炜,2011)。但是,就中国而言,人民币名义汇率的粘性也是不容忽视的影响因素。在人民币的名义汇率存在粘性的情况下,国内外通货膨胀率不会对名义汇率变动做出充分调整,从而导致可贸易产品的国内外价格长期偏离一价定律决定的水平。
本文的结论还有助于重新审视巴拉萨-萨缪尔森效应。传统的经验研究忽视了可贸易品偏离一价定律因素的影响,所以在回归中存在遗漏变量问题。当本文重新把这一遗漏变量放入回归的时候,发现巴拉萨-萨缪尔森效应在中国显著成立,这为“人民币实际汇率之谜”提供了一种新的解释。但是,即便巴萨效应显著成立,它也只是通过相对价格在发挥作用,而后者的影响是很小的。所以,研究人民币实际汇率,应该更多地关注国际市场变化,而不应该仅仅停留在传统的巴拉萨-萨缪尔森效应。
当然,本文的研究也存在局限性。最显著的问题,是没有充分考虑可贸易品偏离一价定律因素与“相对相对”价格变动因素之间的相关性。由于不可贸易品(主要是生产性服务)是可贸易产品的重要组成部分,所以可贸易品偏离一价定律,很大程度就是由于中国的公共服务不足、基础设施不完善等因素所致,忽视这种相关性,极有可能导致分解结果偏误。在今后的研究中,我们将会着重解决这一问题。
作者感谢南加州大学C.M.Betts的指导与建议,感谢北京大学周其仁教授、黄益平教授、姚洋教授、余淼杰教授,中央财经大学张礼卿教授以及中国社会科学院世经政所何帆研究员的评论,以及CCER国际经济研讨会上各位参会人员的建议;感谢中金公司刘鎏在数据提供方面给予的支持和匿名审稿人的修改建议。文责自负。
注释:
①“相对相对”价格变动,是参照学术界常用的“相对相对”劳动生产率的概念提出,意为国内相对价格较之国外相对价格的变动。下文为符合语言称谓,有时也称之为相对价格。毕竟,如果一国面临的外部环境是经济结构较为稳定的发达国家,本国相对价格是其中最关键的因素。
②相应地,实际汇率本身常常被称为外部实际汇率。
③例如,新开放条件下的宏观经济学(New Open Economy Macroeconomics,NOEM)中依市场定价(Pricing to Market,PTM)这一分支就着重考虑可贸易品对一价定律的偏离。
④为了计算上的方便,与Engel(1999)等不同,式(2)中的汇率采用间接标价法,即单位本币兑换外币的价格,这并不影响最终的结论。我们在进行人民币实际汇率分解时,也将采用间接标价法。
⑤方差分解法的难点在于协方差部分的处理。在两个部分的相关系数很低的时候,忽略协方差因素并不会带来太多偏误;但是,如果两个部分的协方差很大,忽略协方差就显得不再合理。但是,两个部分究竟对协方差的贡献是多少,确实在技术上很难处理。若是强行按照两个部分各取二分之一做法进行分解,显得过于随意。Betts & Kehoe(2006)的研究建议,在不能准确估算两个部分对协方差的贡献的时候,尽量选择不考虑协方差的方差分解法。均方误差分解方法是Engel(1999)最初采用的方法。所以,本文综合Betts & Kehoe(2006)以及Engel(1999),最终采用不考虑协方差的方差分解法和均方误差分解方法进行研究。需要指出的是,在本文的工作论文版本中,五种方法都曾经被使用,详细的结果可以向作者索要。
⑥文献中,也有选择分类产出价格指数(De Gregorio et al,1994;De Gregorio & Wolf,1994;Canzoneri et al,1996;Engel,1999),或者基于个人消费支出的价格指数(Personal Consumption Expenditure Deflator,PCD)进行研究,但是出于国内数据的可得性,本文仍然采用最简明的CPI价格指数作为一般物价指数进行研究。
⑦进出口价格指数有两种度量方式,一种是进口产品价格指数和出口产品价格指数(Import and Export Price Index),一种是单位进口价值指数与单位出口价值指数(Import and Export Unit Values)。二者的区别在于是否考虑篮子中产品品种的变化。例如,同样的汽车品牌,当篮子中的高档车数量减少、低档车数量增加,前一种方式度量的价格指数不发生变化,而后一种价格指数则会相应下降。但是在实践中,各个国家公布的指数不尽相同,两种度量方法经常交替使用(Burstein et al,2006),即该国报告何种进出口价格指数,就采用该进出口价格指数作为可贸易品价格指数的衡量,本文也采取这种做法。在获取了进出口价格指数后,再以进出口的数量作为权重,加权平均计算可贸易品价格指数。
⑧这里的“运输”成本,包括后期的包装、交通成本,以及附加于其上的各种服务成本等等。
⑨加权平均的计算方式类似实际有效汇率的计算,是中国对一国进口和出口金额之和占中国对所有国家进口和出口金额之和的比重。
⑩“相对相对”劳动生产率是卢锋提出的,他认为两个“相对”重叠在一起,虽然在语言习惯上有所不便,却体现了巴萨理论分析逻辑的本意所在。
(11)在实际研究中,还有学者利用人均收入作为“相对相对”劳动生产率的替代指标研究巴拉萨-萨缪尔森效应,但是,人均收入并不能完全的捕捉“相对相对”劳动生产率的变化,同时还可能与可贸易品偏离一价定律的程度产生相关性,并不是一个良好的指标。所以,本文的研究严格按照定义,以劳动生产率为基础构建指标。
(12)这里,若是直接回归,显然会面临明显的单位根问题。换句话说,这里回归的被解释变量是内部实际汇率,其实这也是巴拉萨-萨缪尔森效应的应有之意。
(13)作者同样采用双向固定效应模型进行估计,发现1994-2003、1998-2004两个时间段的“相对相对”劳动生产率的估计系数都不再显著,估计系数的方差很大,这极有可能是由样本量下降、自由度太少所致。