摘要:为降低雷电灾害事故产生,设计阶段需对送电线路途经地区的自然情况、地形条件、雷电现象、土壤电阻率等情况做充分的了解与掌握,并按照已经架设送电线路稳定运行的实际经验等,采取对比的方式选取科学合理高效的防雷措施,增强送电线路防雷能力。雷电是较为复杂且随机性较高的自然现象,需电力各个部门进行紧密协作配合,避免雷电灾害事故发生的频发,提升送电线路稳定运行的可靠性。
关键词:电力线路;防雷措施;分析
1雷击对架空电力线路存在的主要危害形式
就架空线路来说,其通常会受到雷击损坏,而这时的导线就会受到电磁感应,进而导致其出现一定的电压,使得其电压比电力相电压高,对电路造成损坏,从而导致各种安全事故的发生。而且,在架空线路受到雷击时,其对应的线路中会出现一定的雷电流,其对应的电力相对较大,会导致其对地阻抗上形成较高的电位差,使其能够沿着线路进行传输,最后进入到变电站中,在这种情况下, 如果其变电站中所对应的防雷措施相对较差,就会导致输电设备的损害,从而对电路的正常运行造成不良影响。架空电力线路在受到雷击作用时,会导致其内部出现绝缘闪络,其主要被表现在两个方面。首先,绕击。这种形式主要是指其雷电在相线上进行直接作用,其遭受点击的概率,在一般情况下都与雷电在架空电力线路上定向和先导发展具有一定联系,如果其对应的迎面先导导线表现为向上发展,则在其遭受到雷击作用后,就会导致绕击损坏情况的出现。与此同时,其出现概率也与导线的数量、其分布形式和其临近的路线情况等相关。其所在地势的影响也相对较大,在一般情况下,其山区环境中的绕击概率相对较高,甚至会达到平原地区的 3 倍左右。其次,反击。反击形式在电力架空线路方面也是常见的,在其对应的雷击杆和塔顶上的避雷针或是避雷线在遭受到雷击后,会促进其雷电流的产生,实现接地,导致杆塔的电位升高,并使其导线上产生感应过电压。在这种情况下,促进其塔体电位和相导线感应电压合成电位差升高,使其高过高压送电线路绝缘闪络电压值,则会导致导线和杆塔之间出现闪络情况,也就是反击闪络。
2防雷的措施
2.1科学合理规划设计送电线路。为有效提升送电线路发展建设防雷能力,首先,最为根本的是对线路自身基础设备设施做出保障,线路传输系统的基础设备设施建设需最大程度减小引发雷击范围,从而对地理位置进行规划有效降低雷击情况的发生。比如,电力线路设计规划阶段,需尽可能排除水资源、矿产资源、高海拔山地等区域,增强送电线路邻近区域的绝缘范围,确保传输稳定不受影响。又如,某地区线路工程设施设备设计规划阶段,对施工区域仔细勘察,分析其历史气象雷击数据,对电力线路工程设施设备建设进行科学合理的规划设计,有效减小线路实际运行阶段雷击跳闸、损坏设施设备等现象的发生概率。
2.2合理选取绝缘
对于送电线路,绝缘配合需对电气设备荷载电压以及保护装置特点和绝缘耐受性等因素进行综合全面的考量与分析,合理明确设备设施的实际绝缘能力,减小绝缘引起的问题,使设备设施的检修维护更加方便,节约建造成本。选取绝缘子串数量时,需确保破坏强度较高,绝缘强度较强,承受过电压能力优秀。选取塔头绝缘,考虑大气环境与绝缘子串空气间隙之间存在的放电电压,由于空气密度与湿度会对电压产生较大影响,空气密度与湿度较大情况下,放电电压相对较大,湿度一定情况下,绝缘表面可形成闪络现象。
2.3架设避雷线
架设避雷线防雷措施,在送电线路应用较为普遍,避雷线可以有效防止雷电对导线部分造成雷击,还可以对电流进行有效分离,减小杆塔存在的实际雷电电流,从而减小塔顶位置存在的实际电位。耦合导线,则能够减小绝缘子存在的有效电压;屏蔽导线,可以降低导线实际存在有效感应过电压。通常情况下,线路电压较高时避雷线实际效果较为明显,与此同时,避雷线成本相对较低。规范标准明确要求,高压送电线路避雷线设置应进行全线设置。
期刊文章分类查询,尽在期刊图书馆为增强避雷线屏蔽导线的实际效果,使雷电无法绕过避雷线对导线造成雷击,需减小绕击率。避雷线边导线保护角范围需规定为 20°~30°之间较为适宜,高压线路设置为 20°上下较为适宜,特高压线路以及超高压线路设置应不高于 15°为适宜。
2.4安装避雷器
送电线路安装避雷器,当杆塔同导线之间存在的电位差大于避雷器电压情况下,避雷器则会产生分流效果,避免绝缘子发生闪络现象。雷击跳闸现象发生概率较大的送电线路,应采取科学合理的选择性安装。线路避雷器通常包括无间隙型与带串联间隙型。① 无间隙型。避雷器同导线之间采取直连,对电站型避雷器做出借鉴与延续,带有稳定的吸收冲击能量,运行与操作电压情况下,无放电延时与串联间隙不发生动作,避雷器自身不带电,排除电器老化问题;串联间隙上部与下部位置电极为垂直设置,放电特性无变化、分散性较小等特点。② 带串联间隙型。避雷器同导线之间采取空间间隙进行有效连接,雷电电流出现则会承受工频电压产生的作用,可靠性良好运行期限较长等特点。带串联间隙型应用较为普遍,间隙存在的隔离效果,避雷器不需要考虑运行电压与老化问题,故障问题对线路运行不产生影响。
2.5减小接地电阻
杆塔接地电阻增加的主要因素包括:① 接地体发生腐蚀现象,特别是山区环境酸性土壤或是风化土壤情况下,较易产生化学反应腐蚀,连接点位置腐蚀情况最为严重。② 山坡坡带位置,雨水冲刷作用导致水土流失对线路稳定性造成影响。③ 外力形式造成破坏,接地引下线或是接地体出现丢失情况或是遭到外力破坏。接地电阻同耐雷能力存在反比关系,参考土壤电阻率,最大程度减小接地电阻,成为提升耐雷能力的重要方式。具体措施包括:① 对线路测试不符标准接地电阻做出全面仔细的再次检测,对土壤电阻率做出检测。② 对检查不符标准的杆塔放射线进行开挖,进行合理铺设,对接地线进行合格连接。然后,对未设置接地引线的杆塔进行焊接,地接地电阻进行再次测试,对不符标准杆塔进行再次建设。③ 对设置接地电阻但不符标准杆塔,添加降阻模块采取优化升级处理。
2.6重视检测工作
借助雷电定位系统,当送电线路遭遇雷击情况时,可以及时准确的发现故障产生地点,使工作人员可以更快地处理故障问题,进行抢修维护,与此同时,缓解工作强度,避免时间浪费情况的出现,及时恢复供电,使送电线路稳定可靠运行得到保障。与此同时,对雷电呈现的规律以及事故特点等问题做了解掌握,可以为后续分析研究提供可靠的数据保障,为送电线路制定可靠有效的防雷措施奠定良好基础。
3结语
在整个电网发展中,架空输电线路是其中的重要内容,它主要是由基础工程,架空导地线,铁件及其附件,各类缆和基础杆塔等组成的,其中的导线主要是安装在地面的塔杆上,为电能的传输做出基础。但是在实际的发展过程中,架空输电线路时常常会出现各类冲击电流故障问题,进而很容易导致跳闸问题的出现,为人们的正常用电和安全用电带来了极大的困扰。还需要对此问题进行深入分析,加强防雷措施,从而保证电力架空线路的有效运行。
参考文献
[1]王勇.试论10kV电力系统线路的防雷措施[J].天工,2018,(5):26.
[2]詹青山.架空电力线路的防雷保护研究[J].电力系统装备,2018,(8):249,256.
[3]刘佳琦.架空电力线路的防雷保护研究[J].科技创新与应用,2017,0(3).
[4]李升禄.架空电力线路的防雷保护研究[J].数字化用户,2017,23(44):86.
[5]朱荣冬.对于电力输电线路防雷问题的探究[J].环球市场,2017,(25):162.
论文作者:李海龙
论文发表刊物:《当代电力文化》2019年第8期
论文发表时间:2019/9/19
标签:线路论文; 导线论文; 避雷线论文; 防雷论文; 杆塔论文; 雷电论文; 避雷器论文; 《当代电力文化》2019年第8期论文;