钟颖 广西梧州岑溪市第十一小学 543200
【摘要】“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。对学习有兴趣的,主动去学习的,了解数学学科的特点,才能使自己进入数学的广阔天地中去。有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。
【关键词】兴趣;主动预习;及时总结;主动、灵活的思考
中图分类号:G652.6文献标识码:A文章编号:ISSN0257-2826(2018)10-053-01
数学是一门基础学科,数学又是一门高深而奥妙无穷的学科,小学生的数学学习不是被动地接受数学知识,而是主动探求知识、发展能力的过程。要学好它,兴趣、习惯、方法以及能力对小学生来说都很重要。兴趣和习惯是有效学习的前提,方法和能力是有效学习的保证。在教学中总是要求学生要有自己的学习方法,对学习有兴趣的,主动去学习的,了解数学学科的特点,才能使自己进入数学的广阔天地中去。
一、要有学习数学的兴趣。
要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣,首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。
二、学会主动预习
当前,有些学生没有注意养成预习的习惯,新课上完后,学生才知道学习了什么,这样无准备的学习,是不可能取得最佳效果的。课前预习可以使我们由被动接受学习变为主动参与学习,帮助你成功地完成课堂学习任务。现在大多数学生学习是被动接受式学习,即课前不翻课本,不了解新知点滴,凭课上有限的时间听老师讲解来达到完全理解和掌握新数学知识,其效果不可能十分理想。这样做不仅其知识内涵难以切入到一定的深度,而且其知识外延也难以拓展到应有的广度。所以我们最好都要在课前进行必要的新知预习。
预习新知时,可先通读课堂主题全部,再仔细研究内容例题,争取达到弄懂例题反映的知识类型、知识类型需要的基础知识,例题体现的概念和解决问题的方法以及解题规律;如果搞不懂,就要把自己不懂的地方记录下来。有条件的话,请教他人把问题解决;或带着这些问题走进课堂,在积极参与老师教学引导的课堂学习、理解活动中使问题得以解决。而对于在预习中已经明白的内容可通过听讲来比较一下自己理解与教师讲解之间的差距、切入问题的角度是否相同。如有不同,看谁的切入更巧妙、理解更到位,以便在以后的预习中进行适当的调节。
三、掌握解题方法
在老师的引导下掌握思考问题的方法一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。
期刊文章分类查询,尽在期刊图书馆有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。
四、及时总结解题规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:(1)本题最重要的特点是什么?(2)解本题用了哪些基本知识与基本图形?(3)本题你是怎样观察、联想、变换来实现转化的?(4)解本题用了哪些数学思想、方法?(5)解本题最关键的一步在那里?(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
五、拓宽解题思路
在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:(1)2400÷(2400×20%÷5)-5=20(天)(2)2400×(1-20%)÷(2400×20%÷)=20(天)。教师启发学生,提问:“修完它的20%用5天,还剩下(1-20%)要用多少天修完呢?”学生很快想到倍比的方法列出:(3)5×(1-20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再启发学生,能否用比例知识解答?学生又会想出:(6)20%∶(1-20%)=5∶X(设剩下的用X天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。
六、善于质疑问难
学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。著名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“V”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。
七、要主动、灵活的思考问题。
在数学学习中遇到疑难是正常现象,有的学生善于质疑问难,能请教老师或他人,有的学生则遇到疑难不吱声,怕别人笑话,这是不良习惯。解决疑难的过程,就是学习的过程,许多的科学发现和发明就是在这一过程中实现的。学习中,要多创设让学生表现自己的机会,鼓励学生大胆发言,敢于质疑问难,培养学生敢于发表自己见解的习惯。
主动思考不仅可以加深知识的透彻理解,而且能够沟通新知与旧知的联系,也能为继续深入的学习创立良好的基础。主动思考就是在明确条件问题的前提下不仅思考主要问题,也思考与之相关联的相邻问题。灵活思考就是在解决一个问题时,不是只想到一种方法;而是积极地寻求另外的方法,甚至把能解决这个问题的所有方法都想到,然后从中选取最为简捷的方法解决问题。经过长期这样的锻炼,你就形成了敏捷的思考速度和较强的思维组织应变能力,你也就具备了“举一反三”的能力。
论文作者:钟颖
论文发表刊物:《中国教师》2018年10月刊
论文发表时间:2018/9/3
标签:数学论文; 学生论文; 方法论文; 本题论文; 兴趣论文; 主动论文; 正方体论文; 《中国教师》2018年10月刊论文;