关键词:冷缩电缆 故障原因 防范措施
在现代变、配电工程中,电缆以其施工维护方便、供电可靠性高等特点得以广泛使用,冷缩电缆头也以其独有的优点得到广泛使用。冷缩电缆头,现场施工简单方便,其冷缩管具有弹性,只要抽出内芯尼龙支撑条,可紧紧贴服在电缆上,不需要使用加热工具,克服了热缩材料在电缆运行时,因热胀冷缩而产生的热缩材料与电缆本体之间的间隙。
一、冷缩电缆终端头技术要求
冷缩电缆终端头是利用弹性体材料(常用的有硅橡胶和乙丙橡胶)在工厂内注射硫化成型,再经扩径、衬以塑料螺旋支撑物构成各种电缆附件的部件。现场安装时,将这些预扩张件套在经过处理后的电缆末端或接头处,抽出内部支撑的塑料螺旋条(支撑物),压紧在电缆绝缘上而构成的电缆附件。因为它是在常温下靠弹性回缩力,而不是像热收缩电缆附件要用火加热收缩,故俗称冷收缩电缆附件。早期的冷收缩电缆终端头只是附加绝缘采用硅橡胶冷缩部件,电场处理仍采用应力锥型式或应力带绕包式。
现在普遍都采用冷收缩应力控制管,电压等级从10kV到35kV。冷缩电缆终端头,1kV级采用冷收缩绝缘管作增强绝缘,10kV级采用带内外半导电屏蔽层的接头冷收缩绝缘件。三芯电缆终端分叉处采用冷收缩分支套。
冷缩电缆终端头具有体积小、操作方便、迅速、无需专用工具、适用范围宽和产品规格少等优点。与热收缩式电缆附件相比,不需用火加热,且在安装以后挪动或弯曲不会像热收缩式电缆附件那样出现附件内部层间脱开的危险(因为冷缩电缆终端头靠弹性压紧力)。与预制式电缆附件相比,虽然都是靠弹性压紧力来保证内部界面特性,但是它不像预制式电缆附件那样与电缆截面一一对应,规格多。必须指出的是,在安装到电缆上之前,预制式电缆附件的部件是没有张力的,而冷缩电缆终端头是处于高张力状态下,因此必须保证在贮存期内,冷收缩式部件不应有明显的永久变形或弹性应力松弛,否则安装在电缆上以后不能保证有足够的弹性压紧力,从而不能保证良好的界面特性。
二、冷缩电缆终端故障原因分析及防范措施
下面就某公司35kV配电线路发生的一起35kV电力电缆终端头由于制作工艺不到位引起的单相接地故障的剖析,制定防范措施,进一步规范电力电缆终端头制作工艺,保障电缆的安全运行。
2.1故障情况
2017年4月21日,35kV线35—39号杆间电缆终端头B相半导体层断开处绝缘击穿事故,终端头采用冷缩制作。根据电缆型号及敷设方式,电缆运行的载流量未超过设计值,电缆运行时并无过载现象,并且电缆头故障发生前35kV系统并无接地现象。故障点均在电场畸变最严重的铜屏蔽层断口和半导体层断口处,主绝缘材料热熔后流失,铜屏蔽剥切口至半导体层剥切口线芯已部分裸露。电缆绝缘层表面有明显放电碳化通道,由此可见,以上电缆终端头击穿可能由以下原因引起:铜屏蔽层断口处有尖角毛刺,导致放电。半导体剥切时将主绝缘划伤,造成此处绝缘最薄弱,击穿电压过低。
2.2原因分析
对终端头来说,电场畸变最严重处为金属屏蔽断开处,造成电场畸变的主要原因是:在电缆屏蔽的切断处,会产生电应力集中现象,电场强度最大,是整个接头的薄弱环节,同时,由于变电站现场运行环境较差,半导体层与主绝缘表面结合处不可避免会侵入灰尘、气体等杂质,众所周知,杂质,气隙,尖角毛刺是造成固体绝缘介质沿面放电的主要原因,所以在电缆制作工艺方面可能导致冷缩电缆终端头绝缘击穿的原因有以下几点:
一是剥切内护套时,划伤铜屏蔽层,造成断口处电场强度增强,容易放电。
二是剥切铜屏蔽时,用力不当,划伤半导体层,容易存在气隙。
期刊文章分类查询,尽在期刊图书馆
三是剥切电缆半导体层时,用力不当,使主绝缘层表面有伤痕,容易存在气隙。
四是铜屏蔽断开处和半导体层断开处有尖角毛刺未处理平整。
五是电缆半导体屏蔽层剥切后,没有清除干净,其半导体残留在主绝缘层上,或清擦时没有遵循工艺要求,来回擦洗,或主绝缘及铜屏蔽断口处未用硅脂填充,留下隐患,产生闪络放电。
六是安装附件时应力管与绝缘屏蔽搭接少于20mm,交联电缆因内应力处理不良时在运行中会发生较大收缩,容易产生气隙。
上述操作均会在各部位产生气隙、杂质或是尖角毛刺。对于交联聚乙烯绝缘电缆来说,它耐局部放电性能差,受杂质和气隙及水份的影响很大,在这些缺陷处易产生局部电场集中,发生局部放电。热膨胀系数大,热机械力效应严重。另外,由于运行中的弯曲变形、冷热作用,金属屏蔽层与绝缘层之间就更易产生气隙,气隙的局部放电,虽然不会立即导致整个介质的击穿,但是绝缘内部空隙处逐步形成电树枝,并向纵深发展,绝缘加速老化直至发生绝缘电击穿或热击穿;同时金属屏蔽断口处如果有尖角毛刺,此处就会存在集中的高场强,引发绝缘介质的树枝状裂纹,出现树枝状放电。电树枝在发展中必然伴随着局部放电,而局部放电又促进树枝的生成与成长。
交联电缆绝缘对绝缘微孔杂质及半导体屏蔽微孔及突起尺寸的要求非常高。实际上,交联电缆的质量水平特别是其长期性能,本质上是由绝缘材料、绝缘内微孔杂质和半导体屏蔽微孔及突起的尺寸决定的,因此,划伤主绝缘或半导体层都会人为地扩大绝缘内微孔杂质和半导体屏蔽微孔杂质的尺寸,使得击穿电压下降。可见,在电缆终端头制作时,要严格执行电缆头制作工艺标准,并在电缆刀剥切过程中对力度的把握尤为重要。
2.3防范对策
鉴于交联电缆本身的诸多缺点和冷缩电缆终端头制作中施工人员不易注意的细节而导致电缆终端头局部放电或电树枝放电,提出以下防范对策及注意事项:
一是严格控制电缆剥切尺寸,每剥除一层不可伤及内层结构。
二是剥切铜屏蔽层时,应用细扎丝或扎带扎好,使断口处不产生尖角毛刺。
三是半导体层断面应光滑平整,与绝缘层的过渡应光滑。
四是电缆绝缘层剥切后,应用细砂纸仔细打磨主绝缘层表面,使其光滑无刀痕,无半导体残点。清洗绝缘层表面必须用清洗溶剂从线芯向半导体层方向,严禁用接触过半导体屏蔽层的清洗纸清洗主绝缘层表面。
五是打磨和清洗主绝缘时,清洗剂和砂纸不得碰到外半导电层,以免清洗剂溶解半导电层,砂纸打磨遗留杂质清除不干净导致放电。
六是用硅脂填充电缆绝缘半导体层断口处的气隙以排除气体。
七是附件的尺寸与待安装的电缆尺寸配合要严格符合规定的要求,适当的过盈量,特别是应力管与绝缘屏蔽搭接不少于20mm,以防收缩时应力管与绝缘屏蔽脱离。
三、小结
在制作电缆终端头时,要特别注意保持清洁,同时应尽量缩短制作时间,电缆剥切后,在空气中暴露的时间越长,侵入杂质,水分,气体,灰尘等的可能性就越大,从而影响终端头质量。因此要求在施工之前充分做好各项准备工作,保证制作时不间断,一气呵成。
参考文献:
1.哈长发.电力系统配网自动化技术应用分析[J].科技创新和应用,2013
2.王明俊.发展中的配电自动化[J].电力自动化设备,2014(06)
3.徐丙垠,李胜祥,陈宗军.电力电缆故障探测技术[M].北京:中国机械出版牡,2001.
论文作者:林文金
论文发表刊物:《当代电力文化》2019年 20期
论文发表时间:2020/3/16
标签:电缆论文; 终端论文; 屏蔽论文; 半导体论文; 断口论文; 杂质论文; 电场论文; 《当代电力文化》2019年 20期论文;